In the digital age, phishing attacks have been a persistent security threat leveraged by traditional password management systems that are not able to verify the authenticity of websites. This paper presents an approac...In the digital age, phishing attacks have been a persistent security threat leveraged by traditional password management systems that are not able to verify the authenticity of websites. This paper presents an approach to embedding sophisticated phishing detection within a password manager’s framework, called PhishGuard. PhishGuard uses a Large Language Model (LLM), specifically a fine-tuned BERT algorithm that works in real time, where URLs fed by the user in the credentials are analyzed and authenticated. This approach enhances user security with its provision of real-time protection from phishing attempts. Through rigorous testing, this paper illustrates how PhishGuard has scored well in tests that measure accuracy, precision, recall, and false positive rates.展开更多
Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network e...Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network environment. This paper proposes a novel approach for designing a cross-domain group PAKE protocol, that primarily handles with the setting of multi-participant in the multi- domain. Moreover, our protocol is proved secure against active adversary in the Real-or-Random (ROR) model. In our protocol, no interaction occurs between any two domain authentication servers. They are regarded as ephemeral certificate authorities (CAs) to certify key materials that participants might subsequently use to exchange and agree on group session key. We further justify the computational complexity and measure the average computation time of our protocol. To the best of our knowledge, this is the first work to analyze and discuss a provably secure multi-participant cross-domain group PAKE protocol.展开更多
文摘In the digital age, phishing attacks have been a persistent security threat leveraged by traditional password management systems that are not able to verify the authenticity of websites. This paper presents an approach to embedding sophisticated phishing detection within a password manager’s framework, called PhishGuard. PhishGuard uses a Large Language Model (LLM), specifically a fine-tuned BERT algorithm that works in real time, where URLs fed by the user in the credentials are analyzed and authenticated. This approach enhances user security with its provision of real-time protection from phishing attempts. Through rigorous testing, this paper illustrates how PhishGuard has scored well in tests that measure accuracy, precision, recall, and false positive rates.
基金This paper was supported by National 863 Program (2013AA01A212), the National Natural Science Foundation of China (Grant Nos. 61370063, 61272512 and 61300177). Beijing Municipal Natural Science Foundation (4121001), Basic Research Foundation of Beijing Institute of Technology (20120742010 and 2013074200).
文摘Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network environment. This paper proposes a novel approach for designing a cross-domain group PAKE protocol, that primarily handles with the setting of multi-participant in the multi- domain. Moreover, our protocol is proved secure against active adversary in the Real-or-Random (ROR) model. In our protocol, no interaction occurs between any two domain authentication servers. They are regarded as ephemeral certificate authorities (CAs) to certify key materials that participants might subsequently use to exchange and agree on group session key. We further justify the computational complexity and measure the average computation time of our protocol. To the best of our knowledge, this is the first work to analyze and discuss a provably secure multi-participant cross-domain group PAKE protocol.