Let Q be the real quaternion field.Let the set of all matrices A=(α<sub>ij</sub>)<sub>n×m</sub>be Q<sub>n×m</sub>where α<sub>ij</sub>∈Q,A<sup>+</su...Let Q be the real quaternion field.Let the set of all matrices A=(α<sub>ij</sub>)<sub>n×m</sub>be Q<sub>n×m</sub>where α<sub>ij</sub>∈Q,A<sup>+</sup> be the conjugate transpose of A.Over a long period of time,there have been various kinds of definitions of determinantover the real quaternion field,but all of them are not concerning the entries of thematrix directly,that is"undirectly".From the point of view how the theory of determi-nant is algebraically developed for skew field,it may be worthwhile defined展开更多
This paper aims to present, in a unified manner, algebraic techniques for linear equations which are valid on both the algebras of quaternions and split quaternions. This paper, introduces a concept of v-quaternion, s...This paper aims to present, in a unified manner, algebraic techniques for linear equations which are valid on both the algebras of quaternions and split quaternions. This paper, introduces a concept of v-quaternion, studies the problem of v-quaternionic linear equations by means of a complex representation and a real representation of v-quaternion matrices, and gives two algebraic methods for solving v-quaternionic linear equations. This paper also gives a unification of algebraic techniques for quaternionic and split quaternionic linear equations in quaternionic and split quaternionic mechanics.展开更多
Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neith...Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.展开更多
In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the ta...In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .展开更多
文摘Let Q be the real quaternion field.Let the set of all matrices A=(α<sub>ij</sub>)<sub>n×m</sub>be Q<sub>n×m</sub>where α<sub>ij</sub>∈Q,A<sup>+</sup> be the conjugate transpose of A.Over a long period of time,there have been various kinds of definitions of determinantover the real quaternion field,but all of them are not concerning the entries of thematrix directly,that is"undirectly".From the point of view how the theory of determi-nant is algebraically developed for skew field,it may be worthwhile defined
文摘This paper aims to present, in a unified manner, algebraic techniques for linear equations which are valid on both the algebras of quaternions and split quaternions. This paper, introduces a concept of v-quaternion, studies the problem of v-quaternionic linear equations by means of a complex representation and a real representation of v-quaternion matrices, and gives two algebraic methods for solving v-quaternionic linear equations. This paper also gives a unification of algebraic techniques for quaternionic and split quaternionic linear equations in quaternionic and split quaternionic mechanics.
基金supported by the Fundamental Research Funds for the Central Universities of China(ZXH2012H005)supported in part by the National Natural Science Foundation of China(61201085,51402356,51506216)+1 种基金the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(U1633101)the Joint Fund of the Natural Science Foundation of Tianjin(15JCQNJC42800)
文摘Solving quaternion kinematical differential equations(QKDE) is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present explicit symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modelling its time-invariant and time-varying versions with Hamiltonian systems and adopting a three-step strategy. Firstly,a generalized Euler's formula and Cayley-Euler formula are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecticity, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the explicit symplectic geometric algorithm for the time-varying quaternion kinematical differential equation, i.e., a non-autonomous and non-linear Hamiltonian system essentially, is designed with the theorems proved. Our novel algorithms have simple structures, linear time complexity and constant space complexity of computation. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.
文摘In this paper, two different methods are used to study the cyclic structure solution and the optimal approximation of the quaternion Stein equation AXB - X = F . Firstly, the matrix equation equivalent to the target structure matrix is constructed by using the complex decomposition of the quaternion matrix, to obtain the necessary and sufficient conditions for the existence of the cyclic solution of the equation and the expression of the general solution. Secondly, the Stein equation is converted into the Sylvester equation by adding the necessary parameters, and the condition for the existence of a cyclic solution and the expression of the equation’s solution are then obtained by using the real decomposition of the quaternion matrix and the Kronecker product of the matrix. At the same time, under the condition that the solution set is non-empty, the optimal approximation solution to the given quaternion circulant matrix is obtained by using the property of Frobenius norm property. Numerical examples are given to verify the correctness of the theoretical results and the feasibility of the proposed method. .