To simulate explosion fragments, it is necessary to predict many variables such as fragment velocity, size distribution and projection angle. For active protection systems these predictions need to be made very quickl...To simulate explosion fragments, it is necessary to predict many variables such as fragment velocity, size distribution and projection angle. For active protection systems these predictions need to be made very quickly, before the weapon hits the target. Fast predictions also need to be made in real time simulations when the impact of many different computer models need to be assessed. The research presented in this paper focuses on creating a fast and accurate estimate of one of these variables - the initial fragment velocity. The Gurney equation was the first equation to calculate initial fragment velocity. This equation, sometimes with modifications, is still used today where finite element analysis or complex mathematical approaches are considered too computationally expensive. This paper enhances and improves Breech’s two-dimensional Gurney equation using available empirical data and the principals of conservation of momentum and energy. The results are computationally quick, providing improved accuracy for estimating initial fragment velocity. This will allow the developed model to be available for real-time simulation and fast computation, with improved accuracy when compared to existing approaches.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
The forward slip model with adhesion was used to derive the formula of calculating taper rolling time. The relation between the rolling time and the taper length and the relation between the rolling time and the taper...The forward slip model with adhesion was used to derive the formula of calculating taper rolling time. The relation between the rolling time and the taper length and the relation between the rolling time and the taper thickness can be obtained. The numerical solution for this formula was used on site. According to the simulation result, the roll gap value should be changed linearly with rolling time.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-proce...Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.展开更多
This study introduces a handheld terahertz(THz)scanner designed to quantitatively evaluate human skin hydration levels and thickness.This device,through the incorporation of force sensors,demonstrates enhanced repeata...This study introduces a handheld terahertz(THz)scanner designed to quantitatively evaluate human skin hydration levels and thickness.This device,through the incorporation of force sensors,demonstrates enhanced repeatability and accuracy over traditional fixed THz systems.The scanner was evaluated in the largest THz skin study to date,assessing 314 volunteers,successfully differentiating between individuals with dry skin and hydrated skin using a numerical stratified skin model.The scanner measures and displays skin hydration dynamics within a quarter of a second,indicating its potential for real-time,noninvasive examinations,opening up opportunities for in vivo and ex vivo diagnosis during patient consultations.Furthermore,the portability and ease of use of our scanner enable its widespread application for in vivo and ex vivo diagnosis during patient consultations,potentially allowing in situ biopsy evaluation and elimination of histopathology processing wait times,thereby improving patient outcomes by facilitating simultaneous tumor diagnosis and removal.展开更多
An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the rea...An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance,...OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance, twenty-four animal models(beagles) of aortic regurgitation and acute ischemic left ventricular diastolic dysfunction were created. The left ventricular diastolic function was manipulated with dobutamine or esmolol and fifty-nine hemodynamic stages were achieved. Raw audio signals of the continuous-wave Doppler spectra were collected, and new aortic regurgitation Doppler spectra were built after reprocessing by a personal computer. The updating time of the spectral line was 0.3 ms. The new Doppler spectra contour line was automated using MATLAB(MATrix LABoratory, MathWorks, Natick, MA, USA), and two time intervals,(t2–t1) and(t3–t1) were measured on the ascending branch of the aortic regurgitation Doppler spectrum. Then, the two time intervals were substituted into Bai's equations, and Doppler-derived Tau(Tau-D)was resolved and compared with catheter-derived Tau(Tau-c).RESULTS There is no significant difference between Tau-D and Tau-c(45.95 ± 16.90 ms and 46.81 ± 17.31 ms, respectively;P >0.05). Correlation analysis between Tau-c and Tau-D suggested a strong positive relationship(r = 0.97, P = 0.000). A Bland-Altman plot of Tau-c and Tau-D revealed fair agreement.CONCLUSIONS This new calculation method is simple, convenient, and shows a strong positive relationship and fair agreement with the catheter method.展开更多
To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation w...To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.展开更多
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m...Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.展开更多
Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结...Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结束后通过电泳操作确认扩增产物。目前,Real Time PCR可设计多对引物在同一反应体系中同时对多个靶基因进行扩增,实现多重实时定量检测。Real Time PCR使PCR技术发生了质的飞跃,扩展了PCR技术的应用范畴,是一种具有划时代意义的技术。本文主要介绍Real Time PCR的主要原理、解析方法、技术发展趋势及其在海洋病原生物检测方面的应用。展开更多
文摘To simulate explosion fragments, it is necessary to predict many variables such as fragment velocity, size distribution and projection angle. For active protection systems these predictions need to be made very quickly, before the weapon hits the target. Fast predictions also need to be made in real time simulations when the impact of many different computer models need to be assessed. The research presented in this paper focuses on creating a fast and accurate estimate of one of these variables - the initial fragment velocity. The Gurney equation was the first equation to calculate initial fragment velocity. This equation, sometimes with modifications, is still used today where finite element analysis or complex mathematical approaches are considered too computationally expensive. This paper enhances and improves Breech’s two-dimensional Gurney equation using available empirical data and the principals of conservation of momentum and energy. The results are computationally quick, providing improved accuracy for estimating initial fragment velocity. This will allow the developed model to be available for real-time simulation and fast computation, with improved accuracy when compared to existing approaches.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金Item Sponsored by National Economy Trade Committee Foundation (ZZ0113A040201)
文摘The forward slip model with adhesion was used to derive the formula of calculating taper rolling time. The relation between the rolling time and the taper length and the relation between the rolling time and the taper thickness can be obtained. The numerical solution for this formula was used on site. According to the simulation result, the roll gap value should be changed linearly with rolling time.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
文摘Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.
基金support from the Engineering and Physical Sciences Research Council (EPSRC) (Grant Nos.EP/S021442/1 and EP/V047914/1)Cancer Research UK,the Royal Society (Wolfson Merit Award-EPM)the Health GRP at Warwick University.
文摘This study introduces a handheld terahertz(THz)scanner designed to quantitatively evaluate human skin hydration levels and thickness.This device,through the incorporation of force sensors,demonstrates enhanced repeatability and accuracy over traditional fixed THz systems.The scanner was evaluated in the largest THz skin study to date,assessing 314 volunteers,successfully differentiating between individuals with dry skin and hydrated skin using a numerical stratified skin model.The scanner measures and displays skin hydration dynamics within a quarter of a second,indicating its potential for real-time,noninvasive examinations,opening up opportunities for in vivo and ex vivo diagnosis during patient consultations.Furthermore,the portability and ease of use of our scanner enable its widespread application for in vivo and ex vivo diagnosis during patient consultations,potentially allowing in situ biopsy evaluation and elimination of histopathology processing wait times,thereby improving patient outcomes by facilitating simultaneous tumor diagnosis and removal.
基金Fund of China National Industrial Building Diagnosis and Reconstruction Engineering Technology Research Center under Grant No.YZA2017Ky03the Beijing Natural Science Foundation under Grant No.JQ18029the National Natural Science Foundation of China under Grant No.52078277。
文摘An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金supported by the National Natural Science Foundation of China (No.81771833)the Beijing Natural Science Foundation (No.7172209)。
文摘OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance, twenty-four animal models(beagles) of aortic regurgitation and acute ischemic left ventricular diastolic dysfunction were created. The left ventricular diastolic function was manipulated with dobutamine or esmolol and fifty-nine hemodynamic stages were achieved. Raw audio signals of the continuous-wave Doppler spectra were collected, and new aortic regurgitation Doppler spectra were built after reprocessing by a personal computer. The updating time of the spectral line was 0.3 ms. The new Doppler spectra contour line was automated using MATLAB(MATrix LABoratory, MathWorks, Natick, MA, USA), and two time intervals,(t2–t1) and(t3–t1) were measured on the ascending branch of the aortic regurgitation Doppler spectrum. Then, the two time intervals were substituted into Bai's equations, and Doppler-derived Tau(Tau-D)was resolved and compared with catheter-derived Tau(Tau-c).RESULTS There is no significant difference between Tau-D and Tau-c(45.95 ± 16.90 ms and 46.81 ± 17.31 ms, respectively;P >0.05). Correlation analysis between Tau-c and Tau-D suggested a strong positive relationship(r = 0.97, P = 0.000). A Bland-Altman plot of Tau-c and Tau-D revealed fair agreement.CONCLUSIONS This new calculation method is simple, convenient, and shows a strong positive relationship and fair agreement with the catheter method.
文摘To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.
文摘Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection.
文摘Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结束后通过电泳操作确认扩增产物。目前,Real Time PCR可设计多对引物在同一反应体系中同时对多个靶基因进行扩增,实现多重实时定量检测。Real Time PCR使PCR技术发生了质的飞跃,扩展了PCR技术的应用范畴,是一种具有划时代意义的技术。本文主要介绍Real Time PCR的主要原理、解析方法、技术发展趋势及其在海洋病原生物检测方面的应用。