In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ...In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.展开更多
Electrical capacitance tomography (ECT) has been used for more than a decade for imaging dielectric processes. However, because of its ill-posedness and non-linearity, ECT image reconstruction has always been a chal...Electrical capacitance tomography (ECT) has been used for more than a decade for imaging dielectric processes. However, because of its ill-posedness and non-linearity, ECT image reconstruction has always been a challenge. A new genetic algorithm (GA) developed for ECT image reconstruction uses initial results from a linear back-projection, which is widely used for ECT image reconstruction to optimize the threshold and the maximum and minimum gray values for the image. The procedure avoids optimizing the gray values pixel by pixel and significantly reduces the search space dimension. Both simulations and static experimental results show that the method is efficient and capable of reconstructing high quality images. Evaluation criteria show that the GA-based method has smaller image error and greater correlation coefficients. In addition, the GA-based method converges quickly with a small number of iterations.展开更多
文摘In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms.
基金Supported by the National Natural Science Foundation of China (No. 60204003) and the National High-Tech Research and Development (863) Program of China (No. 2001AA413210)
文摘Electrical capacitance tomography (ECT) has been used for more than a decade for imaging dielectric processes. However, because of its ill-posedness and non-linearity, ECT image reconstruction has always been a challenge. A new genetic algorithm (GA) developed for ECT image reconstruction uses initial results from a linear back-projection, which is widely used for ECT image reconstruction to optimize the threshold and the maximum and minimum gray values for the image. The procedure avoids optimizing the gray values pixel by pixel and significantly reduces the search space dimension. Both simulations and static experimental results show that the method is efficient and capable of reconstructing high quality images. Evaluation criteria show that the GA-based method has smaller image error and greater correlation coefficients. In addition, the GA-based method converges quickly with a small number of iterations.