●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of th...●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.展开更多
Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the pe...Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing spee...Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing speed,image quality,and improvements in three-dimensional(3D)visualization effects.OCT technology,especially functional imaging techniques like optical coherence tomography angiography(OCTA),requires a long acquisition time and a large data size.Despite the substantial increase in the acquisition speed of swept source optical coherence tomography(SS-OCT),it still poses significant challenges for data processing.Additionally,during in situ acquisition,image artifacts resulting from interface reflections or strong reflections from biological tissues and culturing containers present obstacles to data visualization and further analysis.Firstly,a customized frequency domainfilter with anti-banding suppression parameters was designed to suppress artifact noises.Then,this study proposed a graphics processing unit(GPU)-based real-time data processing pipeline for SS-OCT,achieving a measured line-process rate of 800 kHz for 3D fast and high-quality data visualization.Furthermore,a GPU-based realtime data processing for CC-OCTA was integrated to acquire dynamic information.Moreover,a vascular-like network chip was prepared using extrusion-based 3D printing and sacrificial materials,with sacrificial material being printed at the desired vascular network locations and then removed to form the vascular-like network.OCTA imaging technology was used to monitor the progression of sacrificial material removal and vascular-like network formation.Therefore,GPU-based OCT enables real-time processing and visualization with artifact suppression,making it particularly suitable for in situ noninvasive longitudinal monitoring of 3D bioprinting tissue and vascular-like networks in microfluidic chips.展开更多
背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2...背景:3D打印技术可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,在创伤性骨折修复中展示了巨大的应用前景。目的:综述3D打印技术在创伤性骨折中的应用。方法:检索Web of science、PubMed和中国知网数据库2020-2024年发表的创伤骨科领域3D打印技术应用的相关文献,英文检索词为“traumatic fracture,3D printing technology,digital model,surgical guide”,中文检索词为“创伤性骨折,3D打印技术,数字模型,手术导板”,经筛选和分析,最终纳入60篇文献进行分析。结果与结论:①创伤性骨折是各种致伤因素导致的骨骼连续性中断和完整性破坏的骨折现象,以可靠方案提高复位愈合效果,已成为骨外科相关研究领域亟需解决的热点问题;②3D打印技术是以数字模型数据为基础的,运用粉末状金属或聚合物等可黏合成型材料以立体光刻、沉积建模和光聚合物喷射等形式制造满足需求三维实体的技术,在数字骨科生物医学领域应用广泛;③3D打印技术在疾病诊断、术前规划、重建骨折三维模型、定制骨科植入体、定制固定支具及假肢、手术导板制作和骨缺损修复等方面发挥了显著的优势,可根据患者实际病情和治疗需求设计构建模型、手术导板和个性化植入体或固定物,为创伤性骨折的治疗提供了新的思路。展开更多
In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned...In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned RGB-D data, or generate inaccurate relative transformations between consecutive frames. Our approach improves current methods by utilizing matched features across all frames and is robust for RGB-D data with large shifts in consecutive frames. We directly estimate camera pose for each frame by efficiently solving a quadratic minimization problem to maximize the consistency of3 D points in global space across frames corresponding to matched feature points. We have implemented our method within two state-of-the-art online 3D reconstruction platforms. Experimental results testify that our method is efficient and reliable in estimating camera poses for RGB-D data with large shifts.展开更多
Previous studies have shown that the compound(E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one(D30),a pyromeconic acid derivative,possesses antioxidant and anti-inflammatory properties,inhibits amyloid-β aggregati...Previous studies have shown that the compound(E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one(D30),a pyromeconic acid derivative,possesses antioxidant and anti-inflammatory properties,inhibits amyloid-β aggregation,and alleviates scopolamine-induced cognitive impairment,similar to the phase Ⅲ clinical drug resveratrol.In this study,we established a mouse model of Alzheimer's disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β-induced neuropathology.Our results showed that D30 alleviated fibrillar amyloid-β-induced cognitive impairment,promoted fibrillar amyloid-β clearance from the hippocampus and cortex,suppressed oxidative stress,and inhibited activation of microglia and astrocytes.D30 also reversed the fibrillar amyloid-β-induced loss of dendritic spines and synaptic protein expression.Notably,we demonstrated that exogenous fibrillar amyloid-βintroduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain,and this increase was blocked by D30.Considering the role of D30 in clearing amyloid-β,inhibiting neuroinflammation,protecting synapses,and improving cognition,this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer's disease.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorologica...Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorological operation system can only deal with radar data within 2D space as a flat map and lacks supporting 3D characteristics.Thus,valuable 3D information imbedded in radar data cannot be completely presented to meteorological experts.Due to the large amount of data and high complexity of radar data 3D operation,regular methods are not competent for supporting real-time 3D radar data processing and representation.This study aims to perform radar data 3D operations with high efficiency and instant speed to provide real-time 3D support for the meteorological field.In this paper,a topological framework composed of basic inner topological objects is proposed along with the quadtree structure and LOD architecture,based on which 3D operations on radar data can be conducted in a split second and 3D information can be presented in real time.As the applications of the proposed topological framework,two widely used 3D algorithms in the meteorological field are also implemented in this paper.Finally,a case study verifies the applicability and validity of the proposed topological framework.展开更多
Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D onli...Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.展开更多
OBJECTIVE To explore the relationship between multimarker detection of MAGE-1,MAGE-3 and AFP mRNAs in the peripheral blood of patients with hepatocellular carcinoma and micrometastasis using a realtime quantitative-PC...OBJECTIVE To explore the relationship between multimarker detection of MAGE-1,MAGE-3 and AFP mRNAs in the peripheral blood of patients with hepatocellular carcinoma and micrometastasis using a realtime quantitative-PCR(real-time Q-PCR)assay. METHODS Peripheral blood samples were obtained from control subjects and 86 patients with hepatocellular carcinoma (HCC).Real-time Q-PCR was used to detect MAGE-1,MAGE-3, and AFP mRNAs in the blood cells. RESULTS In 86 tumor specimens,the positivity for MAGE-1, MAGE-3,and AFP genes was respectively 34.9%(30/86),60.5% (52/86)and 69.8%(60/86).All specimens expressed at least one marker.MAGE-1,MAGE-3,and AFP transcripts were detected respectively in 12(14.0%),18(20.1%)and 29(33.7%)of the 86 blood specimens from hepatocellular carcinoma patients,while 45 specimens(52.3%)were positive for at least one marker.In addition,MAGE-1,MAGE-3 and AFP gene transcripts were not detected in any peripheral blood specimens from 25 chronic liver disease patients and 28 normal healthy volunteers.The positive rate correlated with the TNM clinical stages,extrahepatic metastasis and portal vein carcinothrombosis(P<0.05).No correlation was found between tumor size,tumor number, differentiation,serum a-fetoprotein(AFP)and the positive rate. CONCLUSION Our results indicate that a multimarker real- time Q-PCR assay with cancer-specific markers such as MAGE-1 and MAGE-3 in combination with a hepatocyte-specific AFP marker may be a promising diagnostic tool for monitoring hepatocellular carcinoma patients with better sensitivity and specificity.展开更多
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour...In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.展开更多
Reconstructing dynamic scenes with commodity depth cameras has many applications in computer graphics,computer vision,and robotics.However,due to the presence of noise and erroneous observations from data capturing de...Reconstructing dynamic scenes with commodity depth cameras has many applications in computer graphics,computer vision,and robotics.However,due to the presence of noise and erroneous observations from data capturing devices and the inherently ill-posed nature of non-rigid registration with insufficient information,traditional approaches often produce low-quality geometry with holes,bumps,and misalignments.We propose a novel 3D dynamic reconstruction system,named HDR-Net-Fusion,which learns to simultaneously reconstruct and refine the geometry on the fly with a sparse embedded deformation graph of surfels,using a hierarchical deep reinforcement(HDR)network.The latter comprises two parts:a global HDR-Net which rapidly detects local regions with large geometric errors,and a local HDR-Net serving as a local patch refinement operator to promptly complete and enhance such regions.Training the global HDR-Net is formulated as a novel reinforcement learning problem to implicitly learn the region selection strategy with the goal of improving the overall reconstruction quality.The applicability and efficiency of our approach are demonstrated using a large-scale dynamic reconstruction dataset.Our method can reconstruct geometry with higher quality than traditional methods.展开更多
Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the diss...Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the dissolution rate and bioavailability for crystalline pharmaceuticals. Engineering crystal shape and shape distribution requires knowledge about the growth behavior of different crystal facets under varied operational conditions e.g. supersaturations. Measurement of the facet growth rates and growth kinetics of static crystals in a crystallizer without stirring has been reported previously. Here attention is given to study on real-time characterization of the 3D facet growth behavior of crystals in a stirred tank where crystals are constantly moving and rotating. The measurement technique is stereo imaging and the crystal shape reconstruction is based on a stereo imaging camera model. By reference to a case study on potash alum crystallization, it is demonstrated that the crystal size and shape distributions (CSSD) of moving and rotating potash alum crystals in the solution can be reconstructed. The moving window approach was used to correlate 3D face growth kinetics with supersaturation (in the range 0.04 - 0.12) given by an ATR FTIR probe. It revealed that {100} is the fastest growing face, leading to a rapid reduction of its area, while the {111} face has the slowest growth rate, reflected in its area continuously getting larger.展开更多
基金Supported by research grants from the National Key Research and Development Program of China(No.2020YFE0204400)the National Natural Science Foundation of China(No.82271042+1 种基金No.52203191)the Zhejiang Province Key Research and Development Program(No.2023C03090).
文摘●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.
文摘Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1104600 and 2022YFA1200208)National Natural Science Foundation of China(No.31927801)Key Research and Development Foundation of Zhejiang Province(No.2022C01123).
文摘Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing speed,image quality,and improvements in three-dimensional(3D)visualization effects.OCT technology,especially functional imaging techniques like optical coherence tomography angiography(OCTA),requires a long acquisition time and a large data size.Despite the substantial increase in the acquisition speed of swept source optical coherence tomography(SS-OCT),it still poses significant challenges for data processing.Additionally,during in situ acquisition,image artifacts resulting from interface reflections or strong reflections from biological tissues and culturing containers present obstacles to data visualization and further analysis.Firstly,a customized frequency domainfilter with anti-banding suppression parameters was designed to suppress artifact noises.Then,this study proposed a graphics processing unit(GPU)-based real-time data processing pipeline for SS-OCT,achieving a measured line-process rate of 800 kHz for 3D fast and high-quality data visualization.Furthermore,a GPU-based realtime data processing for CC-OCTA was integrated to acquire dynamic information.Moreover,a vascular-like network chip was prepared using extrusion-based 3D printing and sacrificial materials,with sacrificial material being printed at the desired vascular network locations and then removed to form the vascular-like network.OCTA imaging technology was used to monitor the progression of sacrificial material removal and vascular-like network formation.Therefore,GPU-based OCT enables real-time processing and visualization with artifact suppression,making it particularly suitable for in situ noninvasive longitudinal monitoring of 3D bioprinting tissue and vascular-like networks in microfluidic chips.
文摘In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned RGB-D data, or generate inaccurate relative transformations between consecutive frames. Our approach improves current methods by utilizing matched features across all frames and is robust for RGB-D data with large shifts in consecutive frames. We directly estimate camera pose for each frame by efficiently solving a quadratic minimization problem to maximize the consistency of3 D points in global space across frames corresponding to matched feature points. We have implemented our method within two state-of-the-art online 3D reconstruction platforms. Experimental results testify that our method is efficient and reliable in estimating camera poses for RGB-D data with large shifts.
基金supported by the Research Foundation for Talented Scholars of Fujian Medical University,No.XRCZX2018014(to DZ)Startup Fund for Scientific Research,Fujian Medical University,No.2019QH1017(to CW)the Natural Science Foundation of Fujian Province,China,Nos.2021J01693(to DZ),2021J02032(to ZCY)。
文摘Previous studies have shown that the compound(E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one(D30),a pyromeconic acid derivative,possesses antioxidant and anti-inflammatory properties,inhibits amyloid-β aggregation,and alleviates scopolamine-induced cognitive impairment,similar to the phase Ⅲ clinical drug resveratrol.In this study,we established a mouse model of Alzheimer's disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β-induced neuropathology.Our results showed that D30 alleviated fibrillar amyloid-β-induced cognitive impairment,promoted fibrillar amyloid-β clearance from the hippocampus and cortex,suppressed oxidative stress,and inhibited activation of microglia and astrocytes.D30 also reversed the fibrillar amyloid-β-induced loss of dendritic spines and synaptic protein expression.Notably,we demonstrated that exogenous fibrillar amyloid-βintroduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain,and this increase was blocked by D30.Considering the role of D30 in clearing amyloid-β,inhibiting neuroinflammation,protecting synapses,and improving cognition,this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer's disease.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by National Natural Science Foundation of China:[Grant Number 41871285].
文摘Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorological operation system can only deal with radar data within 2D space as a flat map and lacks supporting 3D characteristics.Thus,valuable 3D information imbedded in radar data cannot be completely presented to meteorological experts.Due to the large amount of data and high complexity of radar data 3D operation,regular methods are not competent for supporting real-time 3D radar data processing and representation.This study aims to perform radar data 3D operations with high efficiency and instant speed to provide real-time 3D support for the meteorological field.In this paper,a topological framework composed of basic inner topological objects is proposed along with the quadtree structure and LOD architecture,based on which 3D operations on radar data can be conducted in a split second and 3D information can be presented in real time.As the applications of the proposed topological framework,two widely used 3D algorithms in the meteorological field are also implemented in this paper.Finally,a case study verifies the applicability and validity of the proposed topological framework.
基金the Science and Technology Program of Educational Commission of Jiangxi Province,China(DA202104172)the Innovation and Entrepreneurship Course Program of Nanchang Hangkong University(KCPY1910)the Teaching Reform Research Program of Nanchang Hangkong University(JY21040).
文摘Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.
基金This work was supported by a grant from the Tianjin Natural Science Foundation of China(No.023610811)
文摘OBJECTIVE To explore the relationship between multimarker detection of MAGE-1,MAGE-3 and AFP mRNAs in the peripheral blood of patients with hepatocellular carcinoma and micrometastasis using a realtime quantitative-PCR(real-time Q-PCR)assay. METHODS Peripheral blood samples were obtained from control subjects and 86 patients with hepatocellular carcinoma (HCC).Real-time Q-PCR was used to detect MAGE-1,MAGE-3, and AFP mRNAs in the blood cells. RESULTS In 86 tumor specimens,the positivity for MAGE-1, MAGE-3,and AFP genes was respectively 34.9%(30/86),60.5% (52/86)and 69.8%(60/86).All specimens expressed at least one marker.MAGE-1,MAGE-3,and AFP transcripts were detected respectively in 12(14.0%),18(20.1%)and 29(33.7%)of the 86 blood specimens from hepatocellular carcinoma patients,while 45 specimens(52.3%)were positive for at least one marker.In addition,MAGE-1,MAGE-3 and AFP gene transcripts were not detected in any peripheral blood specimens from 25 chronic liver disease patients and 28 normal healthy volunteers.The positive rate correlated with the TNM clinical stages,extrahepatic metastasis and portal vein carcinothrombosis(P<0.05).No correlation was found between tumor size,tumor number, differentiation,serum a-fetoprotein(AFP)and the positive rate. CONCLUSION Our results indicate that a multimarker real- time Q-PCR assay with cancer-specific markers such as MAGE-1 and MAGE-3 in combination with a hepatocyte-specific AFP marker may be a promising diagnostic tool for monitoring hepatocellular carcinoma patients with better sensitivity and specificity.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(grant No.2014BAK03B02)Science for Earthquake Resilience(grant Nos XH16021 and XH16022Y)
文摘In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61902210 and 61521002).
文摘Reconstructing dynamic scenes with commodity depth cameras has many applications in computer graphics,computer vision,and robotics.However,due to the presence of noise and erroneous observations from data capturing devices and the inherently ill-posed nature of non-rigid registration with insufficient information,traditional approaches often produce low-quality geometry with holes,bumps,and misalignments.We propose a novel 3D dynamic reconstruction system,named HDR-Net-Fusion,which learns to simultaneously reconstruct and refine the geometry on the fly with a sparse embedded deformation graph of surfels,using a hierarchical deep reinforcement(HDR)network.The latter comprises two parts:a global HDR-Net which rapidly detects local regions with large geometric errors,and a local HDR-Net serving as a local patch refinement operator to promptly complete and enhance such regions.Training the global HDR-Net is formulated as a novel reinforcement learning problem to implicitly learn the region selection strategy with the goal of improving the overall reconstruction quality.The applicability and efficiency of our approach are demonstrated using a large-scale dynamic reconstruction dataset.Our method can reconstruct geometry with higher quality than traditional methods.
文摘Crystal shape distribution, i.e. the multidimensional size distribution of crystals, is of great importance to their down-stream processing such as in filtration as well as to the end-use properties including the dissolution rate and bioavailability for crystalline pharmaceuticals. Engineering crystal shape and shape distribution requires knowledge about the growth behavior of different crystal facets under varied operational conditions e.g. supersaturations. Measurement of the facet growth rates and growth kinetics of static crystals in a crystallizer without stirring has been reported previously. Here attention is given to study on real-time characterization of the 3D facet growth behavior of crystals in a stirred tank where crystals are constantly moving and rotating. The measurement technique is stereo imaging and the crystal shape reconstruction is based on a stereo imaging camera model. By reference to a case study on potash alum crystallization, it is demonstrated that the crystal size and shape distributions (CSSD) of moving and rotating potash alum crystals in the solution can be reconstructed. The moving window approach was used to correlate 3D face growth kinetics with supersaturation (in the range 0.04 - 0.12) given by an ATR FTIR probe. It revealed that {100} is the fastest growing face, leading to a rapid reduction of its area, while the {111} face has the slowest growth rate, reflected in its area continuously getting larger.