期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Exploring Local Regularities for 3D Object Recognition
1
作者 TIAN Huaiwen QIN Shengfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1104-1113,共10页
In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviat... In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness. 展开更多
关键词 stepwise 3d reconstruction localized regularities 3d object recognition polyhedral objects line drawing
下载PDF
3D Object Recognition by Classification Using Neural Networks
2
作者 Mostafa Elhachloufi Ahmed El Oirrak +1 位作者 Aboutajdine Driss M. Najib Kaddioui Mohamed 《Journal of Software Engineering and Applications》 2011年第5期306-310,共5页
In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads... In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads to recognition of the former. 3D objects of this database are transformations of other objects by one element of the overall transformation. The set of transformations considered in this work is the general affine group. 展开更多
关键词 recognition CLASSIFICATION 3d object NEURAL Network AFFINE TRANSFORMATION
下载PDF
6DOF pose estimation of a 3D rigid object based on edge-enhanced point pair features
3
作者 Chenyi Liu Fei Chen +5 位作者 Lu Deng Renjiao Yi Lintao Zheng Chenyang Zhu Jia Wang Kai Xu 《Computational Visual Media》 SCIE EI CSCD 2024年第1期61-77,共17页
The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focu... The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures. 展开更多
关键词 point pair feature(PPF) pose estimation object recognition 3d point cloud
原文传递
3D Depth Measurement for Holoscopic 3D Imaging System
4
作者 Eman Alazawi Mohammad Rafiq Swash Maysam Abbod 《Journal of Computer and Communications》 2016年第6期49-67,共19页
Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Fea... Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms. 展开更多
关键词 Holoscopic 3d Image Edge detection Auto-Thresholding depthmap Integral Image Local Histogram Analysis object recognition and depth Measurement
下载PDF
Recurrent 3D attentional networks for end-to-end active object recognition
5
作者 Min Liu Yifei Shi +3 位作者 Lintao Zheng Kai Xu Hui Huang Dinesh Manocha 《Computational Visual Media》 CSCD 2019年第1期91-103,共13页
Active vision is inherently attention-driven:an agent actively selects views to attend in order to rapidly perform a vision task while improving its internal representation of the scene being observed.Inspired by the ... Active vision is inherently attention-driven:an agent actively selects views to attend in order to rapidly perform a vision task while improving its internal representation of the scene being observed.Inspired by the recent success of attention-based models in 2D vision tasks based on single RGB images, we address multi-view depth-based active object recognition using an attention mechanism, by use of an end-to-end recurrent 3D attentional network. The architecture takes advantage of a recurrent neural network to store and update an internal representation. Our model,trained with 3D shape datasets, is able to iteratively attend the best views targeting an object of interest for recognizing it. To realize 3D view selection, we derive a 3D spatial transformer network. It is dierentiable,allowing training with backpropagation, and so achieving much faster convergence than the reinforcement learning employed by most existing attention-based models. Experiments show that our method, with only depth input, achieves state-of-the-art next-best-view performance both in terms of time taken and recognition accuracy. 展开更多
关键词 active object recognition RECURRENT NEURAL network next-best-view 3d ATTENTION
原文传递
Computation of Edge-Edge-Edge Events Based on Conicoid Theory for 3-D Object Recognition
6
作者 吴辰晔 马惠敏 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第2期264-270,共7页
The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, e... The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object recognition on the approach of aspect graph. There are two important events, depicted by the aspect graph approach, edge-:edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valuable viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition. 展开更多
关键词 edge-edge-edge (EEE) event aspect graph viewpoint space partition critical events three dimensional 3-d object recognition
原文传递
微透镜阵列实现3维物体旋转不变实时识别 被引量:2
7
作者 郝劲波 王良甚 忽满利 《激光技术》 CAS CSCD 北大核心 2009年第1期8-11,41,共5页
为了实现3维物体旋转不变实时识别,应用微透镜阵列的多视角成像特点,利用透射像阵列的高关联性,实现3维物体信息与2维透射像阵列信息之间的转换,从而可以利用光学2维图像识别技术实现3维物体的识别。对转换和识别过程进行了理论分析,用... 为了实现3维物体旋转不变实时识别,应用微透镜阵列的多视角成像特点,利用透射像阵列的高关联性,实现3维物体信息与2维透射像阵列信息之间的转换,从而可以利用光学2维图像识别技术实现3维物体的识别。对转换和识别过程进行了理论分析,用匹配滤波的方法进行了实验验证,实现了3维物体旋转不变实时识别。得到了良好的识别效果,并实现了旋转方向的准确定位和旋转角度大小的比较判别。结果表明,应用微透镜阵列可以实现旋转3维物体旋转不变实时识别。 展开更多
关键词 信息光学 3维物体识别 匹配滤波 微透镜阵列 旋转不变 旋转方向定位
下载PDF
LWD-3D:Lightweight Detector Based on Self-Attention for 3D Object Detection
8
作者 Shuo Yang Huimin Lu +2 位作者 Tohru Kamiya Yoshihisa Nakatoh Seiichi Serikawa 《CAAI Artificial Intelligence Research》 2022年第2期137-143,共7页
Lightweight modules play a key role in 3D object detection tasks for autonomous driving,which are necessary for the application of 3D object detectors.At present,research still focuses on constructing complex models a... Lightweight modules play a key role in 3D object detection tasks for autonomous driving,which are necessary for the application of 3D object detectors.At present,research still focuses on constructing complex models and calculations to improve the detection precision at the expense of the running rate.However,building a lightweight model to learn the global features from point cloud data for 3D object detection is a significant problem.In this paper,we focus on combining convolutional neural networks with selfattention-based vision transformers to realize lightweight and high-speed computing for 3D object detection.We propose lightweight detection 3D(LWD-3D),which is a point cloud conversion and lightweight vision transformer for autonomous driving.LWD-3D utilizes a one-shot regression framework in 2D space and generates a 3D object bounding box from point cloud data,which provides a new feature representation method based on a vision transformer for 3D detection applications.The results of experiment on the KITTI 3D dataset show that LWD-3D achieves real-time detection(time per image<20 ms).LWD-3D obtains a mean average precision(mAP)75%higher than that of another 3D real-time detector with half the number of parameters.Our research extends the application of visual transformers to 3D object detection tasks. 展开更多
关键词 3d object detection point clouds vision transformer one-shot regression real-time
原文传递
基于微透镜阵列的实时三维物体识别 被引量:10
9
作者 郝劲波 忽满利 +1 位作者 李林森 林巧文 《光子学报》 EI CAS CSCD 北大核心 2007年第11期2008-2012,共5页
提出一种基于微透镜阵列多视角成像特点,将三维物体的深度信息转化为二维透射像阵列的角度信息,利用光学二维图像识别技术,实现对三维物体识别的方法.对识别过程进行了理论分析和计算,用匹配滤波的方法实现了对三维物体骰子的实时识别.... 提出一种基于微透镜阵列多视角成像特点,将三维物体的深度信息转化为二维透射像阵列的角度信息,利用光学二维图像识别技术,实现对三维物体识别的方法.对识别过程进行了理论分析和计算,用匹配滤波的方法实现了对三维物体骰子的实时识别.实验结果表明,本方法的相关识别能力较高,并且具有很强的灵活性,对于有微小旋转、微小平移的三维物体也可进行识别. 展开更多
关键词 三维物体识别 匹配滤波 微透镜阵列 傅里叶变换
下载PDF
基于组合不变矩和神经网络的三维物体识别 被引量:7
10
作者 徐胜 彭启琮 《计算机工程与应用》 CSCD 北大核心 2008年第31期78-80,共3页
在三维物体识别系统中,提出将三维物体的Hu不变矩和仿射不变矩两者的低阶矩组合作为三维物体的特征,结合改进的BP神经网络应用于三维物体的分类识别。理论分析和仿真实验表明组合这两种矩特征进行物体识别,性能优于单独使用Hu不变矩,如... 在三维物体识别系统中,提出将三维物体的Hu不变矩和仿射不变矩两者的低阶矩组合作为三维物体的特征,结合改进的BP神经网络应用于三维物体的分类识别。理论分析和仿真实验表明组合这两种矩特征进行物体识别,性能优于单独使用Hu不变矩,如果进一步对这两种组合的矩特征进行主成分分析处理,可显著提高系统识别性能,并减少网络的训练时间。 展开更多
关键词 三维物体识别 HU不变矩 仿射不变矩 BP神经网络 主成分分析
下载PDF
基于模型的三维物体识别 被引量:4
11
作者 林应强 吴立德 《自动化学报》 EI CSCD 北大核心 1997年第6期756-761,共6页
实现了一个完整的基于模型的三维物体识别系统,它可识别灰度图象中包含的物体,如对遮挡加以限制,还可识别被遮挡的物体.该系统能实现物体的自动建模,也可先定性识别某一物体的立体图对以获取高层知识,然后在高层知识的指导下准确... 实现了一个完整的基于模型的三维物体识别系统,它可识别灰度图象中包含的物体,如对遮挡加以限制,还可识别被遮挡的物体.该系统能实现物体的自动建模,也可先定性识别某一物体的立体图对以获取高层知识,然后在高层知识的指导下准确地匹配立体图对中相对应的特征.此外,还提出了利用最能表示物体特征的表面(特征面)来识别物体的方法,以提高系统抗噪声的能力.大量实验证明,该系统具有相当的稳健性. 展开更多
关键词 三维 物体识别 关系属性图 图象识别
下载PDF
激光三维成像技术及其主要应用 被引量:5
12
作者 王昊鹏 刘泽乾 《电子设计工程》 2012年第12期160-163,168,共5页
阐述了目前三维成像在其常见应用领域中的研究,主要致力于研究高分辨率三维成像系统。三维激光成像是一项可以应用于探测隐藏目标、地形测绘、构建虚拟环境、城市建模、目标识别等领域中的技术。在区域成像技术中,除了如立体视觉和结构... 阐述了目前三维成像在其常见应用领域中的研究,主要致力于研究高分辨率三维成像系统。三维激光成像是一项可以应用于探测隐藏目标、地形测绘、构建虚拟环境、城市建模、目标识别等领域中的技术。在区域成像技术中,除了如立体视觉和结构化灯光等更常规的技术,实时三维传感也具有现实可操作性。当前三维激光成像技术已经发展到有能力提供厘米级波长的高分辨率三维成像,这将给许多领域提供方便,包括法律的实施和法医调查。与CCD和红外技术等传统的被动成像系统相比,激光成像技术不仅能提供强度和范围信息,还能穿透植被和窗户等特定情景元素。这意味着激光三维成像系统在目标识别与辨认等方面具备新的潜力。结果表明,激光三维成像系统可以在许多情况下得到应用。 展开更多
关键词 激光三维成像 隐藏部分目标成像 城市建模 目标图像识别 应用
下载PDF
基于结构照明和BP神经网络的三维物体识别 被引量:2
13
作者 王海霞 陈峰 +1 位作者 赵新亮 吕静 《光电工程》 EI CAS CSCD 北大核心 2007年第8期115-120,共6页
提出一种具有旋转不变性的三维物体识别的新方法,该方法通过结构光照明的方法,使物体的高度分布以变形条纹的形式编码于二维强度图中,由于条纹图包含有物体的高度分布信息,因此对条纹的相关识别具有本征三维识别的特点。旋转不变性是通... 提出一种具有旋转不变性的三维物体识别的新方法,该方法通过结构光照明的方法,使物体的高度分布以变形条纹的形式编码于二维强度图中,由于条纹图包含有物体的高度分布信息,因此对条纹的相关识别具有本征三维识别的特点。旋转不变性是通过BP神经网络实现的。计算机模拟结果表明,用二维强度像的基频分量做训练样本设计BP神经网络,选择训练样本和隐藏层神经元的数目,基于结构光编码的BP神经网络对三维物体具有良好的旋转不变识别效果。 展开更多
关键词 三维物体识别 结构光照明 旋转不变性 BP神经网络
下载PDF
广义的以物体为中心的行程编码——一种新的三维物体模型
14
作者 吴健康 高枫 《机器人》 EI CSCD 北大核心 1990年第5期35-39,共5页
三维物体的表达和识别是图象理解和场景分析的核心问题,三维模型在三维物体的识别和场景分析中具有十分重要的作用.三维模型应该是以物体为中心的,能够提供该场景的所有有用信息.物体的大小,形状及朝向应均可从该模型中提取得到.本文提... 三维物体的表达和识别是图象理解和场景分析的核心问题,三维模型在三维物体的识别和场景分析中具有十分重要的作用.三维模型应该是以物体为中心的,能够提供该场景的所有有用信息.物体的大小,形状及朝向应均可从该模型中提取得到.本文提出了一种新的三维物体模型——广义的以物体为中心的行程编码.它包括物体的GORC物理数据结构,详细的形状描述和抽象描述.物体的高层次的表达可以通过以GORC编码的物理数据直接提取得到.三维的GORC是二维的以物体为中心的行程编码在三维上的推广,它兼有物体的体积表达和表面表达的优点.三维物体的GORC模型可以很容易地由其深度信息构造得出,基于GORC的投影运算,图象代数运算以及特征提取均可非常有效地实现. 展开更多
关键词 三维物体 模型 行程编码 图象识别
下载PDF
The role of machine intelligence in photogrammetric 3D modeling-an overview and perspectives 被引量:2
15
作者 Rongjun Qin Armin Gruen 《International Journal of Digital Earth》 SCIE 2021年第1期15-31,共17页
The process of modern photogrammetry converts images and/or LiDAR data into usable 2D/3D/4D products.The photogrammetric industry offers engineering-grade hardware and software components for various applications.Whil... The process of modern photogrammetry converts images and/or LiDAR data into usable 2D/3D/4D products.The photogrammetric industry offers engineering-grade hardware and software components for various applications.While some components of the data processing pipeline work already automatically,there is still substantial manual involvement required in order to obtain reliable and high-quality results.The recent development of machine learning techniques has attracted a great attention in its potential to address complex tasks that traditionally require manual inputs.It is therefore worth revisiting the role and existing efforts of machine learning techniques in the field of photogrammetry,as well as its neighboring field computer vision.This paper provides an overview of the state-of-the-art efforts in machine learning in bringing the automated and‘intelligent’component to photogrammetry,computer vision and(to a lesser degree)to remote sensing.We will primarily cover the relevant efforts following a typical 3D photogrammetric processing pipeline:(1)data acquisition(2)georeferencing/interest point matching(3)Digital Surface Model generation(4)semantic interpretations,followed by conclusions and our insights. 展开更多
关键词 PHOTOGRAMMETRY camera calibration 3d modeling machine learning object recognition semantic interpretation
原文传递
基于KPCA-SVM的三维物体识别研究
16
作者 陈刚 邓春伟 《计算机光盘软件与应用》 2012年第7期77-78,共2页
在基于视图的三维物体识别系统中,一般采取表征相似视图差异作为识别特征,往往需要较多的特征维数,增加了分类的复杂度,降低了识别效率。本文使用核主成份分析(KPCA)算法对识别特征进行抽取和降维,再应用支持向量机(SVM)进行分类识别,... 在基于视图的三维物体识别系统中,一般采取表征相似视图差异作为识别特征,往往需要较多的特征维数,增加了分类的复杂度,降低了识别效率。本文使用核主成份分析(KPCA)算法对识别特征进行抽取和降维,再应用支持向量机(SVM)进行分类识别,有效解决了上述问题。实验数据采用哥伦比亚图像库,并将所得结果与其他常用识别方法所得结果进行了比较,证明了使用KPCA-SVM方法在不降低分类器性能的前提下,能有效降低输入数据的特征维数,并具有较好的识别性能。 展开更多
关键词 3d object recognition SVM KPCA
下载PDF
从一幅透视投影线图识别三维物体
17
作者 成瑜 《电子学报》 EI CAS CSCD 北大核心 1995年第4期65-69,共5页
本文提出一种从一幅透视线图识别三维物体的新算法。文中简述了几种识别空间多边形的新方法,对多面体引进了独特的表面分布有序连接表示和逐步扩展特征的识别算法,计算机模拟证实了理论的正确性。
关键词 机器视觉 三维物体识别 透视投影不变量
下载PDF
基于结构照明的三维物体识别新方法 被引量:8
18
作者 姜美花 苏显渝 刘元坤 《光电子.激光》 EI CAS CSCD 北大核心 2003年第8期869-872,共4页
提出了一种三维物体的识别方法。将一正弦条纹分别投影到参考物体和待测表面,摄像机得到的是2幅有变形条纹的二维强度像。参考的变形条纹图像和待识别的变形条纹图像,经过联合变换相关(JTC),得到自相关和互相关输出,最后根据输出的相关... 提出了一种三维物体的识别方法。将一正弦条纹分别投影到参考物体和待测表面,摄像机得到的是2幅有变形条纹的二维强度像。参考的变形条纹图像和待识别的变形条纹图像,经过联合变换相关(JTC),得到自相关和互相关输出,最后根据输出的相关峰大小即可判别不同的物体。这种相关识别方法的实质是通过结构照明的方法,构造一个新的识别复函数,物体的高度分布以复函数位相的形式编码于新的识别复函数之中,因此该方法具有本征三维识别的特点。计算机模拟实验证明了这种方法用于三维物体识别的可能性。 展开更多
关键词 结构照明 三维物体识别 联合变换相关 傅里叶变换 相关识别
原文传递
基于仿射不变性特征的视点空间划分 被引量:4
19
作者 孙洁 马惠敏 李凤亭 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期53-56,共4页
为了简化三维物体的识别过程,提高三维物体识别的识别率,该文利用Multi-scale autoconvolution、Trace变换、Zernike矩3种仿射不变性特征,对飞机、汽车、人等三维物体进行视点空间划分,用尽可能少的不等间隔的三维物体的二维投影图像来... 为了简化三维物体的识别过程,提高三维物体识别的识别率,该文利用Multi-scale autoconvolution、Trace变换、Zernike矩3种仿射不变性特征,对飞机、汽车、人等三维物体进行视点空间划分,用尽可能少的不等间隔的三维物体的二维投影图像来表达三维物体,并以此为依据进行三维物体识别。在此基础上提出一种针对不同类型物体的仿射不变性特征提取策略,并建立一个实现三维物体任意姿态识别的软件系统平台,应用Princeton形状标准库中的部分模型对该平台进行测试。结果表明,该方法能够取得较好的识别效果,识别率在90%以上。 展开更多
关键词 模式识别 三维识别 视点空间划分 仿射不变性特征
原文传递
结合突变论和离散聚类思想的视点空间划分算法
20
作者 苏淼 马惠敏 李凤亭 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期518-521,共4页
针对视点空间划分问题中算法复杂以及计算复杂度大的问题,提出了一种结合突变论和离散聚类思想的新方法。利用突变论获得视觉事件的空间切割曲面方程,然后在视点空间球面上选取有序采样并计算每个样点的符号序列,通过对符号序列的判断... 针对视点空间划分问题中算法复杂以及计算复杂度大的问题,提出了一种结合突变论和离散聚类思想的新方法。利用突变论获得视觉事件的空间切割曲面方程,然后在视点空间球面上选取有序采样并计算每个样点的符号序列,通过对符号序列的判断实现对离散点的聚类,使用点集替代传统的边界线方程来表达视点空间分划结果。该方法避免了突变理论中求解视点空间分划线方程数值解以及从分划线相互关系中寻找闭合区域的过程。实验结果表明该方法能够有效地提高三维目标识别的实时性,计算时间不足原算法的15%。 展开更多
关键词 三维目标识别 形态图 视点空间划分 符号序列
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部