This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time d...Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.展开更多
Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violat...Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violated w ay is one of most important issues to take into account. In this paper, a novel and efficient authorization and authentication Digital Rights Management (DRM) s chema is proposed firstly for secure multimedia delivery, then based on the sche ma, a real-time digital signature algorithm built on Elliptic Curve Cryptograph y (ECC) is adopted for fast authentication and verification of licensing managem ent, thus secure multimedia delivery via TCP/RTP can efficiently work with real -time transaction response and high Quality of Service (QoS) . Performance eval uations manifest the proposed schema is secure, available for real-time media s tream authentication and authorization without much effected of QoS. The propose d schema is not only available for Client/Server media service but can be easily extended to P2P and broadcasting network for trusted rights management.展开更多
The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the...The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the difficulty of congestion management of power systems in cross-border electricity market among different regions. For handling this, the Real-Time Market is proposed for balancing capacity trading against congestions. Several strategies for Real-Time Market dealing with congestions are proposed. The strategy of two-stage crossborder markets in Day-ahead, Intra-day and Real Time Market are introduced with the congestion constraints complied. Pre-Contingency strategy is proposed as the advance preparation for the future congestion, and In-Day redispatch is used for regulation. Accordingly, the requirements on facilities considering telemetry and remote control in a fast manner are discussed at last.展开更多
Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information a...Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information are challenge work that must be confronted. A new process alarm management method based on fuzzy clustering- ranking algorithm is proposed. The fuzzy clustering algorithm is used to cluster rationally the process variables, and difference driving decision algorithm ranks different clusters and process parameters in every cluster. The alarm signal of higher rank is handled preferentially to manage effectively alarms and avoid blind operation. The validity of proposed algorithm and solution is verified by the practical application of ethylene cracking furnace system. It is an effective and dependable alarm management method to improve operating safety in industrial process.展开更多
Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring pro...Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.展开更多
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric...Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.展开更多
The coordination problem of a supply chain comprising one supplier and one retailer under market demand disruption is studied in this article. A novel exponential demand function is adopted, and the penalty cost is in...The coordination problem of a supply chain comprising one supplier and one retailer under market demand disruption is studied in this article. A novel exponential demand function is adopted, and the penalty cost is introduced explicitly to capture the deviation production cost caused by the market demand disruption. The optimal strategies are obtained for different disruption scale under the centralized mode. For the decentralized mode, it is proved that the supply chain can be fully coordinated by adjusting the price discount policy appropriately when disruption occurs. Furthermore, the authors point out that similar results can be established for more general demand functions that represent different market circumstances if certain assumptions are satisfied.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
An integrated intelligent management is presented to help organizations manage many heterogeneous resources in their information system. A general architecture of management for information system reliability is propo...An integrated intelligent management is presented to help organizations manage many heterogeneous resources in their information system. A general architecture of management for information system reliability is proposed, and the architecture from two aspects, process model and hierarchical model, described. Data mining techniques are used in data analysis. A data analysis system applicable to real-time data analysis is developed by improved data mining on the critical processes. The framework of the integrated management for information system reliability based on real-time data mining is illustrated, and the development of integrated and intelligent management of information system discussed.展开更多
Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorith...Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utiliza...The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.展开更多
Real-Time Pricing (RTP) is proposed as an effective Demand-Side Management (DSM) to adjust the load curve in order to achieve the peak load shifting. At the same time, the RTP mechanism can also raise the revenue of t...Real-Time Pricing (RTP) is proposed as an effective Demand-Side Management (DSM) to adjust the load curve in order to achieve the peak load shifting. At the same time, the RTP mechanism can also raise the revenue of the supply-side and reduce the electricity expenses of consumers to achieve a win-win situation. In this paper, a real-time pricing algorithm based on price elasticity theory is proposed to analyze the energy consumption and the response of the consumers in smart grid structure. We consider a smart grid equipped with smart meters and two-way communication system. By using real data to simulate the proposed model, some characteristics of RTP are summarized as follows: 1) Under the condition of the real data, the adjustment of load curve and reducing the expenses of consumers is obviously. But the profit of power supplier is difficult to ensure. If we balance the profits of both sides, the supplier and consumers, the profits of both sides and the adjustment of load curve will be relatively limited. 2) If assuming the response degree of consumers to real-time prices is high enough, the RTP mechanism can achieve the expected effect. 3, If the cost of supply-side (day-ahead price) fluctuates dramatically, the profits of both sides can be ensured to achieve the expected effect.展开更多
The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requi...The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requisite for effectual energy management is the availability of the current power consumption values from network devices. Previous works have attempted to estimate and model the consumption values or have measured it using intrusive approaches such as using an in-line power meter. Recent trends suggest that information models are being increasingly used in all aspects of network management. This paper presents a framework developed for enabling the collection of real-time power consumption information from the next generation of networking hardware non-intrusively by employing information models. The experiment results indicate that it is feasible to gather power consumption data using standardized IETF information models, or non-standard customized information models, or through abstracting and exposing the information in a uniform format when no support for the required information models exists. Functional validation of the proposed framework is performed and the results from this research could be leveraged to make energy-efficient network management decisions.展开更多
By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability ...By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.展开更多
For the purpose of realizing the information visualization of hydropower engineering management, we construeted three kinds of graphics models sorted by hierarchy for system modelling, employed the construction simula...For the purpose of realizing the information visualization of hydropower engineering management, we construeted three kinds of graphics models sorted by hierarchy for system modelling, employed the construction simulation system to simulate the real-time construction behaviours, introduced the graphics rendering system to organize and update the virtual scene, and designed the interaction system to respond to the user-initiated and simulation-initiated events. So, the real-time, interactive visualization aided system of hydropower engineering management is developed. Eventually, the effectiveness and capabilities of the system are showed through the application examples in China.展开更多
With increasing restrictions on ship carbon emis-sions,it has become a trend for ships to use zero-carbon energy such as solar to replace traditional fossil energy.However,uncer-tainties of solar energy and load affec...With increasing restrictions on ship carbon emis-sions,it has become a trend for ships to use zero-carbon energy such as solar to replace traditional fossil energy.However,uncer-tainties of solar energy and load affect safe and stable operation of the ship microgrid.In order to deal with uncertainties and real-time requirements and promote application of ship zero-carbon energy,we propose a real-time energy management strategy based on data-driven stochastic model predictive control.First,we establish a ship photovoltaic and load scenario set consid-ering time-sequential correlation of prediction error through three steps.Three steps include probability prediction,equal probability inverse transformation scenario set generation,and simultaneous backward method scenario set reduction.Second,combined with scenario prediction information and rolling op-timization feedback correction,we propose a stochastic model predictive control energy management strategy.In each scenario,the proposed strategy has the lowest expected operational cost of control output.Then,we train the random forest machine learn-ing regression algorithm to carry out multivariable regression on samples generated by running the stochastic model predictive control.Finally,a low-carbon ship microgrid with photovoltaic is simulated.Simulation results demonstrate the proposed strategy can achieve both real-time application of the strategy,as well as operational cost and carbon emission optimization performance close to stochastic model predictive control.Index Terms-Data-driven stochastic model predictive control,low-carbon ship microgrid,machine learning,real-time energy management,time-sequential correlation.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金Supported by the Tsinghua University International Science and Technology Cooperation Project(No.20133000197,20123000148)
文摘Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.
文摘Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violated w ay is one of most important issues to take into account. In this paper, a novel and efficient authorization and authentication Digital Rights Management (DRM) s chema is proposed firstly for secure multimedia delivery, then based on the sche ma, a real-time digital signature algorithm built on Elliptic Curve Cryptograph y (ECC) is adopted for fast authentication and verification of licensing managem ent, thus secure multimedia delivery via TCP/RTP can efficiently work with real -time transaction response and high Quality of Service (QoS) . Performance eval uations manifest the proposed schema is secure, available for real-time media s tream authentication and authorization without much effected of QoS. The propose d schema is not only available for Client/Server media service but can be easily extended to P2P and broadcasting network for trusted rights management.
文摘The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the difficulty of congestion management of power systems in cross-border electricity market among different regions. For handling this, the Real-Time Market is proposed for balancing capacity trading against congestions. Several strategies for Real-Time Market dealing with congestions are proposed. The strategy of two-stage crossborder markets in Day-ahead, Intra-day and Real Time Market are introduced with the congestion constraints complied. Pre-Contingency strategy is proposed as the advance preparation for the future congestion, and In-Day redispatch is used for regulation. Accordingly, the requirements on facilities considering telemetry and remote control in a fast manner are discussed at last.
基金Partially supported by the National Natural Science Foundation of China (No. 29976003), the Key Research Project ofScience and Technology from Ministry of Education in China (No. 01024), and Sinopec Science & Technology DevelopmentProject (No. E03007)
文摘Overmany alarms of modern chemical process give the operators many difficulties to decision and diag- nosis. In order to ensure safe production and process operating, management and optimization of alarm information are challenge work that must be confronted. A new process alarm management method based on fuzzy clustering- ranking algorithm is proposed. The fuzzy clustering algorithm is used to cluster rationally the process variables, and difference driving decision algorithm ranks different clusters and process parameters in every cluster. The alarm signal of higher rank is handled preferentially to manage effectively alarms and avoid blind operation. The validity of proposed algorithm and solution is verified by the practical application of ethylene cracking furnace system. It is an effective and dependable alarm management method to improve operating safety in industrial process.
基金This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR01。
文摘Recently,wireless sensor networks(WSNs)find their applicability in several real-time applications such as disaster management,military,surveillance,healthcare,etc.The utilization of WSNs in the disaster monitoring process has gained significant attention among research communities and governments.Real-time monitoring of disaster areas using WSN is a challenging process due to the energy-limited sensor nodes.Therefore,the clustering process can be utilized to improve the energy utilization of the nodes and thereby improve the overall functioning of the network.In this aspect,this study proposes a novel Lens-Oppositional Wild Goose Optimization based Energy Aware Clustering(LOWGO-EAC)scheme for WSN-assisted real-time disaster management.The major intention of the LOWGO-EAC scheme is to perform effective data collection and transmission processes in disaster regions.To achieve this,the LOWGOEAC technique derives a novel LOWGO algorithm by the integration of the lens oppositional-based learning(LOBL)concept with the traditional WGO algorithm to improve the convergence rate.In addition,the LOWGO-EAC technique derives a fitness function involving three input parameters like residual energy(RE),distance to the base station(BS)(DBS),and node degree(ND).The proposed LOWGO-EAC technique can accomplish improved energy efficiency and lifetime of WSNs in real-time disaster management scenarios.The experimental validation of the LOWGO-EAC model is carried out and the comparative study reported the enhanced performance of the LOWGO-EAC model over the recent approaches.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(W22KJ2722005)“Research on Optimal Configuration and Operation Strategy of Energy Storage under“New Energy+Energy Storage”Mode”.
文摘Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.
基金This research was supported by National Science Foundation of China (60274048)
文摘The coordination problem of a supply chain comprising one supplier and one retailer under market demand disruption is studied in this article. A novel exponential demand function is adopted, and the penalty cost is introduced explicitly to capture the deviation production cost caused by the market demand disruption. The optimal strategies are obtained for different disruption scale under the centralized mode. For the decentralized mode, it is proved that the supply chain can be fully coordinated by adjusting the price discount policy appropriately when disruption occurs. Furthermore, the authors point out that similar results can be established for more general demand functions that represent different market circumstances if certain assumptions are satisfied.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
文摘An integrated intelligent management is presented to help organizations manage many heterogeneous resources in their information system. A general architecture of management for information system reliability is proposed, and the architecture from two aspects, process model and hierarchical model, described. Data mining techniques are used in data analysis. A data analysis system applicable to real-time data analysis is developed by improved data mining on the critical processes. The framework of the integrated management for information system reliability based on real-time data mining is illustrated, and the development of integrated and intelligent management of information system discussed.
文摘Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.
文摘The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.
文摘Real-Time Pricing (RTP) is proposed as an effective Demand-Side Management (DSM) to adjust the load curve in order to achieve the peak load shifting. At the same time, the RTP mechanism can also raise the revenue of the supply-side and reduce the electricity expenses of consumers to achieve a win-win situation. In this paper, a real-time pricing algorithm based on price elasticity theory is proposed to analyze the energy consumption and the response of the consumers in smart grid structure. We consider a smart grid equipped with smart meters and two-way communication system. By using real data to simulate the proposed model, some characteristics of RTP are summarized as follows: 1) Under the condition of the real data, the adjustment of load curve and reducing the expenses of consumers is obviously. But the profit of power supplier is difficult to ensure. If we balance the profits of both sides, the supplier and consumers, the profits of both sides and the adjustment of load curve will be relatively limited. 2) If assuming the response degree of consumers to real-time prices is high enough, the RTP mechanism can achieve the expected effect. 3, If the cost of supply-side (day-ahead price) fluctuates dramatically, the profits of both sides can be ensured to achieve the expected effect.
文摘The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requisite for effectual energy management is the availability of the current power consumption values from network devices. Previous works have attempted to estimate and model the consumption values or have measured it using intrusive approaches such as using an in-line power meter. Recent trends suggest that information models are being increasingly used in all aspects of network management. This paper presents a framework developed for enabling the collection of real-time power consumption information from the next generation of networking hardware non-intrusively by employing information models. The experiment results indicate that it is feasible to gather power consumption data using standardized IETF information models, or non-standard customized information models, or through abstracting and exposing the information in a uniform format when no support for the required information models exists. Functional validation of the proposed framework is performed and the results from this research could be leveraged to make energy-efficient network management decisions.
基金The National Natural Science Foundationof China(No.60873030 )the National High-Tech Research and Development Plan of China(863 Program)(No.2007AA01Z309)
文摘By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.
基金funded by National Natural Science Foundation of China (No.60574071)
文摘For the purpose of realizing the information visualization of hydropower engineering management, we construeted three kinds of graphics models sorted by hierarchy for system modelling, employed the construction simulation system to simulate the real-time construction behaviours, introduced the graphics rendering system to organize and update the virtual scene, and designed the interaction system to respond to the user-initiated and simulation-initiated events. So, the real-time, interactive visualization aided system of hydropower engineering management is developed. Eventually, the effectiveness and capabilities of the system are showed through the application examples in China.
基金supported by the National Natural Science Foundation of China(No.52177110)and the Shenzhen Science and Technology Program(No.JCYJ20210324131409026)。
文摘With increasing restrictions on ship carbon emis-sions,it has become a trend for ships to use zero-carbon energy such as solar to replace traditional fossil energy.However,uncer-tainties of solar energy and load affect safe and stable operation of the ship microgrid.In order to deal with uncertainties and real-time requirements and promote application of ship zero-carbon energy,we propose a real-time energy management strategy based on data-driven stochastic model predictive control.First,we establish a ship photovoltaic and load scenario set consid-ering time-sequential correlation of prediction error through three steps.Three steps include probability prediction,equal probability inverse transformation scenario set generation,and simultaneous backward method scenario set reduction.Second,combined with scenario prediction information and rolling op-timization feedback correction,we propose a stochastic model predictive control energy management strategy.In each scenario,the proposed strategy has the lowest expected operational cost of control output.Then,we train the random forest machine learn-ing regression algorithm to carry out multivariable regression on samples generated by running the stochastic model predictive control.Finally,a low-carbon ship microgrid with photovoltaic is simulated.Simulation results demonstrate the proposed strategy can achieve both real-time application of the strategy,as well as operational cost and carbon emission optimization performance close to stochastic model predictive control.Index Terms-Data-driven stochastic model predictive control,low-carbon ship microgrid,machine learning,real-time energy management,time-sequential correlation.