[Objective] The aim was to study the rear-end real-time data quality control method of regional automatic weather station. [Method] The basic content and steps of rear-end real-time data quality control of regional au...[Objective] The aim was to study the rear-end real-time data quality control method of regional automatic weather station. [Method] The basic content and steps of rear-end real-time data quality control of regional automatic weather station were introduced. Each element was treated with systematic quality control procedure. The existence of rear-end real time data of regional meteorological station in Guangxi was expounded. Combining with relevant elements and linear changes, improvement based on traditional quality control method was made. By dint of evaluation and relevant check of element, the quality of temperature and pressure was controlled. [Result] The method was optimized based on traditional quality control method, and it narrowed the effectiveness of real-time data quality control. The quality check of hourly precipitation applied relevant check of hourly minimum temperature, vertical consistency check of radar data, which can effectively improve the accuracy and credibility of hourly precipitation quality control. [Conclusion] The method was on trial for one year in the quality control of real-time data in the regional automatic meteorological station in Guangxi and had gained good outcome.展开更多
Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is ...Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.展开更多
The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platfor...The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platform which was mainly created by Web was set up. The system not only was fully guaranteed for the funning of basic business, also improved the reliability of the data.展开更多
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie...In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temper...In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temperature with real time. So the control system design and control strategy are described in detail to accomplish the horizontality monitoring and adjusting. The system adopts the industry control computer as the upper computer and the SIEMENS S7-300 PLC as the lower computer. The upper computer that bases on industry configuration software IFIX takes charge of monitoring the platform and puts forward the control strategy. PLC takes charge of receiving the adjusting instructions and controlling the legs moving to accomplish the horizontality adjusting. The horizontality adjusting strategy is emphasized and the concept of grads is introduced to establish a mathematics model of the platform inclined state, so the adjusting method is obtained. Accordingly the key question of the automatic horizontality adjusting is solved in this control system.展开更多
Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the featur...Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming;statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted.展开更多
A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore...A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore,in this paper,a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words.Furthermore,it considers the importance of entity in complaint reports to ensure factual consistency of summary.Experimental results on the customer review datasets(Yelp and Amazon)and complaint report dataset(complaint reports of Shenyang in China)show that the proposed framework outperforms state-of-the-art approaches in ROUGE scores and human evaluation.It unveils the effectiveness of our approach to helping in dealing with complaint reports.展开更多
Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatur...Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time.展开更多
文摘[Objective] The aim was to study the rear-end real-time data quality control method of regional automatic weather station. [Method] The basic content and steps of rear-end real-time data quality control of regional automatic weather station were introduced. Each element was treated with systematic quality control procedure. The existence of rear-end real time data of regional meteorological station in Guangxi was expounded. Combining with relevant elements and linear changes, improvement based on traditional quality control method was made. By dint of evaluation and relevant check of element, the quality of temperature and pressure was controlled. [Result] The method was optimized based on traditional quality control method, and it narrowed the effectiveness of real-time data quality control. The quality check of hourly precipitation applied relevant check of hourly minimum temperature, vertical consistency check of radar data, which can effectively improve the accuracy and credibility of hourly precipitation quality control. [Conclusion] The method was on trial for one year in the quality control of real-time data in the regional automatic meteorological station in Guangxi and had gained good outcome.
文摘Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.
文摘The quality control system for meteorological real-time data from automatic weather stations in Shandong realized integration of communi- cation system and provincial quality control system, and an interaction platform which was mainly created by Web was set up. The system not only was fully guaranteed for the funning of basic business, also improved the reliability of the data.
基金Supported by the National Program on Key Basic Research Project(No.2013CB329502)the National Natural Science Foundation of China(No.61202212)+1 种基金the Special Research Project of the Educational Department of Shaanxi Province of China(No.15JK1038)the Key Research Project of Baoji University of Arts and Sciences(No.ZK16047)
文摘In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
文摘In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temperature with real time. So the control system design and control strategy are described in detail to accomplish the horizontality monitoring and adjusting. The system adopts the industry control computer as the upper computer and the SIEMENS S7-300 PLC as the lower computer. The upper computer that bases on industry configuration software IFIX takes charge of monitoring the platform and puts forward the control strategy. PLC takes charge of receiving the adjusting instructions and controlling the legs moving to accomplish the horizontality adjusting. The horizontality adjusting strategy is emphasized and the concept of grads is introduced to establish a mathematics model of the platform inclined state, so the adjusting method is obtained. Accordingly the key question of the automatic horizontality adjusting is solved in this control system.
文摘Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming;statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted.
基金supported by National Natural Science Foundation of China(62276058,61902057,41774063)Fundamental Research Funds for the Central Universities(N2217003)Joint Fund of Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China(2020-KF-12-11).
文摘A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore,in this paper,a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words.Furthermore,it considers the importance of entity in complaint reports to ensure factual consistency of summary.Experimental results on the customer review datasets(Yelp and Amazon)and complaint report dataset(complaint reports of Shenyang in China)show that the proposed framework outperforms state-of-the-art approaches in ROUGE scores and human evaluation.It unveils the effectiveness of our approach to helping in dealing with complaint reports.
基金This work was financially supported by the Tianjin Key Research and Development Program Science and Technology Support Key Project(Grant No.20YFZCSN00220)the Central Government Leading Local Science and Technology Development Special Project(Grant No.21ZYCGSN00590)the Inner Mongolia Autonomous Region Science and Technology Department Project(Grant No.2020GG0068).
文摘Determination of ovulation time is one of the most important tasks in sow reproduction management.Temperature variation in the vulva of the sows can be used as a predictor of ovulation time.However,the skin temperatures of sows in existing studies are obtained manually from infrared thermal images,posing an obstacle to the automatic prediction of ovulation time.In this study,an improved YOLO-V5s detector based on feature fusion and dilated convolution(FDYOLOV5s)was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images.For the purpose of reducing the model complexity,the depthwise separable convolution and the modified lightweight ShuffleNet-V2 module were introduced in the backbone.Meanwhile,the feature fusion network structure of the model was simplified for efficiency,and a mixed dilated convolutional module was designed to obtain global features.The experimental results show that FD-YOLOV5s outperformed the other nine methods,with a mean average precision(mAP)of 99.1%,an average frame rate of 156.25 fps,and a model size of only 3.86 MB,indicating that the method effectively simplifies the model while ensuring detection accuracy.Using a linear regression between manual extraction and the results extracted using this method in randomly selected thermal images,the coefficients of determination for maximum and average vulvar temperatures reached 99.5%and 99.3%,respectively.The continuous vulva temperature of sows was obtained by the target detection algorithm,and the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results.The results showed that the sensitivity,specificity,and error rate of the estrus detection algorithm were 89.3%,94.5%,and 5.8%,respectively.The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the automatic detection of sow estrus,which could be helpful for the automatic prediction of ovulation time.