The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat re...The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environ- mental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG 1 (TcA) of T castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of lisp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TeA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 ~C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management.展开更多
Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible proper...Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible properties,magnesium-based biomaterials are considered as ideal degradable medical implants.However,the rapid corrosion of magnesium-based materials not only limits their clinical application but also necessitates a more specific biological evaluation system and biosafety standard.In this study,extracts of pure Mg and its calcium alloy were prepared using different media based on ISO 10993:12;the Mg^2+ concentration and osmolality of each extract were measured.The biocompatibility was investigated using the MTT assay and xCELLigence real-time cell analysis(RTCA).Cytotoxicity tests were conducted with L929,MG-63 and human umbilical vein endothelial cell lines.The results of the RTCA highly matched with those of the MTT assay and revealed the different dynamic modes of the cytotoxic process,which are related to the differences in the tested cell lines,Mg-based materials and dilution rates of extracts.This study provides an insight on the biocompatibility of biodegradable materials from the perspective of cytotoxic dynamics and suggests the applicability of RTCA for the cytotoxic evaluation of degradable biomaterials.展开更多
Chlorine, chlorine dioxide, and ozone are widely used as disinfectants in drinking water treatments. However, the combined use of different disinfectants can result in the formation of various organic and inorganic di...Chlorine, chlorine dioxide, and ozone are widely used as disinfectants in drinking water treatments. However, the combined use of different disinfectants can result in the formation of various organic and inorganic disinfection byproducts(DBPs). The toxic interactions, including synergism, addition, and antagonism, among the complex DBPs are still unclear. In this study, we established and verified a real-time cell analysis(RTCA) method for cytotoxicity measurement on Chinese hamster ovary(CHO) cell. Using this convenient and accurate method, we assessed the cytotoxicity of a series of binary combinations consisting of one of the 3 inorganic DBPs(chlorite, chlorate, and bromate) and one of the 32 regulated and emerging organic DBPs. The combination index(CI) of each combination was calculated and evaluated by isobolographic analysis to reflect the toxic interactions. The results confirmed the synergistic effect on cytotoxicity in the binary combinations consisting of chlorite and one of the 5 organic DBPs(2 iodinated DBPs(I-DBPs) and 3 brominated DBPs(Br-DBPs)), chlorate and one of the 4 organic DBPs(3 aromatic DBPs and dibromoacetonitrile), and bromate and one of the 3 organic DBPs(2 I-DBPs and dibromoacetic acid). The possible synergism mechanism of organic DBPs on the inorganic ones may be attributed to the influence of organic DBPs on cell membrane and cell antioxidant system. This study revealed the toxic interactions among organic and inorganic DBPs, and emphasized the latent adverse outcomes in the combined use of different disinfectants.展开更多
The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that t...The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that the processing speed of these systems is limited to the recognition speed of the human eye. However, there is a strong demand for real-time high-speed vision sensors in many application fields, such as factory automation, biomedicine, and robotics, where high-speed operations are carried out. These high-speed operations can be tracked and inspected by using high-speed vision systems with intelligent sensors that work at hundreds of Hertz or more, especially when the operation is difficult to observe with the human eye. This paper reviews advances in developing real-time high Speed vision systems and their applications in various fields, such as intelligent logging systems, vibration dynamics sensing, vision-based mechanical control, three-dimensional measurement/automated visual inspection, vision-based human interface, and biomedical applications.展开更多
文摘The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environ- mental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG 1 (TcA) of T castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of lisp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TeA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 ~C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management.
基金supported by the National Key Research and Development Project of China(NO.2016YFC1103205).
文摘Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility,biodegradability and biosafety.Owing to their bioabsorbable and biocompatible properties,magnesium-based biomaterials are considered as ideal degradable medical implants.However,the rapid corrosion of magnesium-based materials not only limits their clinical application but also necessitates a more specific biological evaluation system and biosafety standard.In this study,extracts of pure Mg and its calcium alloy were prepared using different media based on ISO 10993:12;the Mg^2+ concentration and osmolality of each extract were measured.The biocompatibility was investigated using the MTT assay and xCELLigence real-time cell analysis(RTCA).Cytotoxicity tests were conducted with L929,MG-63 and human umbilical vein endothelial cell lines.The results of the RTCA highly matched with those of the MTT assay and revealed the different dynamic modes of the cytotoxic process,which are related to the differences in the tested cell lines,Mg-based materials and dilution rates of extracts.This study provides an insight on the biocompatibility of biodegradable materials from the perspective of cytotoxic dynamics and suggests the applicability of RTCA for the cytotoxic evaluation of degradable biomaterials.
基金supported by the National Natural Science Foundation of China (No. 21876210)。
文摘Chlorine, chlorine dioxide, and ozone are widely used as disinfectants in drinking water treatments. However, the combined use of different disinfectants can result in the formation of various organic and inorganic disinfection byproducts(DBPs). The toxic interactions, including synergism, addition, and antagonism, among the complex DBPs are still unclear. In this study, we established and verified a real-time cell analysis(RTCA) method for cytotoxicity measurement on Chinese hamster ovary(CHO) cell. Using this convenient and accurate method, we assessed the cytotoxicity of a series of binary combinations consisting of one of the 3 inorganic DBPs(chlorite, chlorate, and bromate) and one of the 32 regulated and emerging organic DBPs. The combination index(CI) of each combination was calculated and evaluated by isobolographic analysis to reflect the toxic interactions. The results confirmed the synergistic effect on cytotoxicity in the binary combinations consisting of chlorite and one of the 5 organic DBPs(2 iodinated DBPs(I-DBPs) and 3 brominated DBPs(Br-DBPs)), chlorate and one of the 4 organic DBPs(3 aromatic DBPs and dibromoacetonitrile), and bromate and one of the 3 organic DBPs(2 I-DBPs and dibromoacetic acid). The possible synergism mechanism of organic DBPs on the inorganic ones may be attributed to the influence of organic DBPs on cell membrane and cell antioxidant system. This study revealed the toxic interactions among organic and inorganic DBPs, and emphasized the latent adverse outcomes in the combined use of different disinfectants.
文摘The frame rate of conventional vision systems is restricted to the video signal formats (e.g., NTSC 30 fps and PAL 25 fps) that are designed on the basis of the characteristics of the human eye, which implies that the processing speed of these systems is limited to the recognition speed of the human eye. However, there is a strong demand for real-time high-speed vision sensors in many application fields, such as factory automation, biomedicine, and robotics, where high-speed operations are carried out. These high-speed operations can be tracked and inspected by using high-speed vision systems with intelligent sensors that work at hundreds of Hertz or more, especially when the operation is difficult to observe with the human eye. This paper reviews advances in developing real-time high Speed vision systems and their applications in various fields, such as intelligent logging systems, vibration dynamics sensing, vision-based mechanical control, three-dimensional measurement/automated visual inspection, vision-based human interface, and biomedical applications.