This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle oute...This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle outer contour limitations,the collision avoidance trajectory is divided into three segments:lane changing,overtaking and back to original lane.The starting point and end point of lane-change are decided based on longitudinal and lateral safety distance model according to the relative speed and distance as well as the outer contour of the two vehicles.Based on system objective function and lane-change trajectory cluster,vehicle states,dynamic constraints and vehicle body kinematics constraints,the optimal trajectory can be selected,which can monitor the relative location of the obstacle vehicle constantly and then ensure the vehicle can accomplish the collision avoidance safely and smoothly.Simulation and experiment results demonstrate the effectiveness and feasibility of proposed trajectory planning strategy for the active collision avoidance.展开更多
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in...This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.展开更多
In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)m...In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol.展开更多
基金the National Natural Science Foundation of China(Grant No.51202175)the Youth fund of Jiangsu Natural Science Foundation(Grant No.BK20200423)National Natural Science Foundation of China(Grant No.5210120245).
文摘This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle outer contour limitations,the collision avoidance trajectory is divided into three segments:lane changing,overtaking and back to original lane.The starting point and end point of lane-change are decided based on longitudinal and lateral safety distance model according to the relative speed and distance as well as the outer contour of the two vehicles.Based on system objective function and lane-change trajectory cluster,vehicle states,dynamic constraints and vehicle body kinematics constraints,the optimal trajectory can be selected,which can monitor the relative location of the obstacle vehicle constantly and then ensure the vehicle can accomplish the collision avoidance safely and smoothly.Simulation and experiment results demonstrate the effectiveness and feasibility of proposed trajectory planning strategy for the active collision avoidance.
基金sponsored by National Natural Science Foundation of China (Nos. 61673327, 51606161, 11602209, 91441128)Natural Science Foundation of Fujian Province of China (No. 2016J06011)China Scholarship Council (No. 201606310153)
文摘This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results.
基金supported in part by the Foundation(No.2019-JCJQ-ZD-049)the National Natural Science Foundation of China(Nos.61703134,62022060,62073234,61773278)+2 种基金The China Postdoctoral Science Foundation(No.2019M650874)The Key R&D Program of Hebei Province(No.20310802D)the Natural Science Foundation of Hebei Province(Nos.F2019202369,F2018202279,F2019202363)。
文摘In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol.