By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on b...By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.展开更多
Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role ...Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role status efficiently and reduce data latency during the communication process. Meanwhile, it can be extended flexibly to meet increasing communication demands of mHealth services. Furthermore, a system framework is presented to support telemonitoring scene. Finally, system implementation and feasibility tests verify the effectiveness of the method and framework.展开更多
In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network laten...In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network latency with a target upper bound in the order of 1 ms while maintaining high network reliability and availability. The novelty of the proposed wireless MAC protocol resides in its similar latency performance as its counterpart in wired industrial LAN. First, the functional design of the MAC protocol is introduced. Then its performance results gained from hardware implementation (SystemC and VHDL) on an FPGA platform are presented. Finally, a real-time communication module which achieves the ultra-low latency required in industrial automation is described.展开更多
We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine func...We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.展开更多
Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks an...Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.展开更多
Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technolo...Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.展开更多
To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design...To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capac...With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.展开更多
In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehen...In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.展开更多
Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. ...Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.展开更多
Telecommunications Regulatory Commission of Sri Lanka is the governing body which is responsible for the frequency allocation and monitoring the unauthorized Electromagnetic frequency(EMF)signal transmitting violation...Telecommunications Regulatory Commission of Sri Lanka is the governing body which is responsible for the frequency allocation and monitoring the unauthorized Electromagnetic frequency(EMF)signal transmitting violations.However,in Sri Lanka,currently there is not any proper mechanism to monitor the radiation hazard level and its impact to the people living in the vicinity of mobile communication towers.There are approximately 7000 mobile transmitting towers in Sri Lanka to date and the used frequency range lies between 900 MHz to 3 GHz for mobile communication.Over the last few decades,many of the health hazard conditions were reported due to the radiation of those harmful EMFs.To cater this problem,a portable real time EMF signal strength measuring system with a radiation hazard level indicator was developed to monitor the EMF level and its impact.The proposed system operates with three intermediate frequency bands(i.e.900 MHz,1800 MHz and 2400 MHz)and it’s capable of measuring the power density and the radiation hazard level at that particular point which is being measured.Moreover,the corresponding radiation hazard level is indicated with reference to the standard power density levels published by the International Commission on Non-Ionizing Radiation Protection(ICNIRP^(*)).The system works with the overall accuracy of 88%in terms of identifying the power densities and its corresponding radiation hazard levels.展开更多
High speed data communication between digital signal processor and the host is required to meet the demand of most real-time systems. PCI bus technology is a solution of this problem. The principle of data communicati...High speed data communication between digital signal processor and the host is required to meet the demand of most real-time systems. PCI bus technology is a solution of this problem. The principle of data communication based on PCI has been explained. Meanwhile, the technology of data transfer between synchronous dynamic RAM(SDRAM) and an mapping space of on-chip memory(L2) by expansion direct memory access(EDMA) has also been realized.展开更多
In order to realize the video image transmission and the excellent lighting function of the visible light communication system, a LED-based visible light communication method and system is proposed. Based on the field...In order to realize the video image transmission and the excellent lighting function of the visible light communication system, a LED-based visible light communication method and system is proposed. Based on the field programmable gate array (FPGA) hardware, the RS channel coding is applied to the visible light communication system. A pulse position decision algorithm is proposed, which is applied to the receiver of the visible light communication system to meet the error-free decision of the signal. The design of the system is based on the analog-to-digital conversion circuit, which provides a large signal dynamic range for the pulse position decision algorithm, and designs the LED driver based on the bias circuit to realize the fast broadband modulation of the signal. The test results show that the combined application of pulse position decision algorithm and Reed-Solomon codec can reduce the error of system signal and meet the real-time and reliable transmission of signal. The system can display the received video in real time from the receiver, and the whole system communication distance up to 5 m.展开更多
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
基金Supported by the Emphases Science and Technology Project Foundation of Sichuan Province(NO.02GG006-037)
文摘By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.
文摘Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role status efficiently and reduce data latency during the communication process. Meanwhile, it can be extended flexibly to meet increasing communication demands of mHealth services. Furthermore, a system framework is presented to support telemonitoring scene. Finally, system implementation and feasibility tests verify the effectiveness of the method and framework.
基金funding from the German Federal Ministry for Education and Research(2015-2017)under the grant agreement No.16KIS0179 also referred as DEAL
文摘In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network latency with a target upper bound in the order of 1 ms while maintaining high network reliability and availability. The novelty of the proposed wireless MAC protocol resides in its similar latency performance as its counterpart in wired industrial LAN. First, the functional design of the MAC protocol is introduced. Then its performance results gained from hardware implementation (SystemC and VHDL) on an FPGA platform are presented. Finally, a real-time communication module which achieves the ultra-low latency required in industrial automation is described.
基金supported by the National Natural Science Foundation of China,No.81801907(to NC)Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research,No.ZDSYS20230626091402006(to NC)+2 种基金Sanming Project of Medicine in Shenzhen,No.SZSM201911002(to SL)Foundation of Shenzhen Committee for Science and Technology Innovation,Nos.JCYJ20230807110310021(to NC),JCYJ20230807110259002(to JL)Science and Technology Program of Guangzhou,No.2024A04J4716(to TL)。
文摘We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
文摘Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.
文摘Wireless communications in extreme environments,such as underwater and underground,is an essential technology for interconnecting various devices and enables data transmission and networking.Existing wireless technologies using electromagnetic(EM)waves face many known problems,such as high path loss,unpredictable multi-path fading,and large antenna size in the lossy medium.In this article,the magnetic induction(MI)based physical layer communication is introduced as a promising solution for wireless transmissions in extreme environments.Specifically,the fundamentals of the MI-based communications are reviewed.Then,with the goal of establishing reliable and low-power links between small-size devices,we review several key physical layer technologies for MI-based communications,including the MIbased signal modulations,magnetic beamforming,and relay transmissions,and summarize their state-of-theart research advances.Finally,the related open issues and challenges in each area are analyzed and presented for future investigations.
基金supported in part by National Natural Science Foundation of China under Grants 62122069,62071431,and 62201507.
文摘To address the contradiction between the explosive growth of wireless data and the limited spectrum resources,semantic communication has been emerging as a promising communication paradigm.In this paper,we thus design a speech semantic coded communication system,referred to as Deep-STS(i.e.,Deep-learning based Speech To Speech),for the lowbandwidth speech communication.Specifically,we first deeply compress the speech data through extracting the textual information from the speech based on the conformer encoder and connectionist temporal classification decoder at the transmitter side of Deep-STS system.In order to facilitate the final speech timbre recovery,we also extract the short-term timbre feature of speech signals only for the starting 2s duration by the long short-term memory network.Then,the Reed-Solomon coding and hybrid automatic repeat request protocol are applied to improve the reliability of transmitting the extracted text and timbre feature over the wireless channel.Third,we reconstruct the speech signal by the mel spectrogram prediction network and vocoder,when the extracted text is received along with the timbre feature at the receiver of Deep-STS system.Finally,we develop the demo system based on the USRP and GNU radio for the performance evaluation of Deep-STS.Numerical results show that the ac-Received:Jan.17,2024 Revised:Jun.12,2024 Editor:Niu Kai curacy of text extraction approaches 95%,and the mel cepstral distortion between the recovered speech signal and the original one in the spectrum domain is less than 10.Furthermore,the experimental results show that the proposed Deep-STS system can reduce the total delay of speech communication by 85%on average compared to the G.723 coding at the transmission rate of 5.4 kbps.More importantly,the coding rate of the proposed Deep-STS system is extremely low,only 0.2 kbps for continuous speech communication.It is worth noting that the Deep-STS with lower coding rate can support the low-zero-power speech communication,unveiling a new era in ultra-efficient coded communications.
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
文摘With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.
基金supported by the National Natura Science Foundation of China (NSFC), No.51607146China National Major Science and Technology Projects 2010ZX06004-013-04-02 and 2012ZX06002-017-02-01+1 种基金Sichuan Science and Technology Program,No.2018GZ0391Sichuan Hydropower Energy and power equipment technology Engineering Research Center, Xihua university, Chengdu 610039, China,No.SDNY2020-001
文摘In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.
文摘Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.
文摘Telecommunications Regulatory Commission of Sri Lanka is the governing body which is responsible for the frequency allocation and monitoring the unauthorized Electromagnetic frequency(EMF)signal transmitting violations.However,in Sri Lanka,currently there is not any proper mechanism to monitor the radiation hazard level and its impact to the people living in the vicinity of mobile communication towers.There are approximately 7000 mobile transmitting towers in Sri Lanka to date and the used frequency range lies between 900 MHz to 3 GHz for mobile communication.Over the last few decades,many of the health hazard conditions were reported due to the radiation of those harmful EMFs.To cater this problem,a portable real time EMF signal strength measuring system with a radiation hazard level indicator was developed to monitor the EMF level and its impact.The proposed system operates with three intermediate frequency bands(i.e.900 MHz,1800 MHz and 2400 MHz)and it’s capable of measuring the power density and the radiation hazard level at that particular point which is being measured.Moreover,the corresponding radiation hazard level is indicated with reference to the standard power density levels published by the International Commission on Non-Ionizing Radiation Protection(ICNIRP^(*)).The system works with the overall accuracy of 88%in terms of identifying the power densities and its corresponding radiation hazard levels.
文摘16.09.06‐NI (美国国家仪器公司,National Instruments ,简称NI)作为致力于为工程师和科学家提供解决方案来应对全球最严峻的工程挑战的供应商,宣布推出LabVIEW Communications系统设计套件2.0这一个专门用于无线通信系统原型开发的设计环境。新版本增加了NI Linux Real‐Time 功能,适用于所有软件定义无线电(SDR)产品,包括NI USRP RIO 和FlexRIO 。新增的功能可帮助工程师开发在 NI Linux Real‐Time 操作系统上运行实时算法,并与其他工具搭配使用,将协议栈上移到M AC层和网络层,同时访问搭建完整系统原型所需要的庞大的开源工具和技术库,系统原型的搭建是推进5G 项目的关键。
文摘High speed data communication between digital signal processor and the host is required to meet the demand of most real-time systems. PCI bus technology is a solution of this problem. The principle of data communication based on PCI has been explained. Meanwhile, the technology of data transfer between synchronous dynamic RAM(SDRAM) and an mapping space of on-chip memory(L2) by expansion direct memory access(EDMA) has also been realized.
文摘In order to realize the video image transmission and the excellent lighting function of the visible light communication system, a LED-based visible light communication method and system is proposed. Based on the field programmable gate array (FPGA) hardware, the RS channel coding is applied to the visible light communication system. A pulse position decision algorithm is proposed, which is applied to the receiver of the visible light communication system to meet the error-free decision of the signal. The design of the system is based on the analog-to-digital conversion circuit, which provides a large signal dynamic range for the pulse position decision algorithm, and designs the LED driver based on the bias circuit to realize the fast broadband modulation of the signal. The test results show that the combined application of pulse position decision algorithm and Reed-Solomon codec can reduce the error of system signal and meet the real-time and reliable transmission of signal. The system can display the received video in real time from the receiver, and the whole system communication distance up to 5 m.
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.