[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes...Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware.展开更多
Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limi...Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. .展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless contr...Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.展开更多
Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th...Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.展开更多
After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtuali...After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.展开更多
Background Pan-genomics is a recently emerging strategy that can be utilized to provide a more comprehensive characterization of genetic variation.Joint calling is routinely used to combine identified variants across ...Background Pan-genomics is a recently emerging strategy that can be utilized to provide a more comprehensive characterization of genetic variation.Joint calling is routinely used to combine identified variants across multiple related samples.However,the improvement of variants identification using the mutual support information from mul-tiple samples remains quite limited for population-scale genotyping.Results In this study,we developed a computational framework for joint calling genetic variants from 5,061 sheep by incorporating the sequencing error and optimizing mutual support information from multiple samples’data.The variants were accurately identified from multiple samples by using four steps:(1)Probabilities of variants from two widely used algorithms,GATK and Freebayes,were calculated by Poisson model incorporating base sequencing error potential;(2)The variants with high mapping quality or consistently identified from at least two samples by GATK and Freebayes were used to construct the raw high-confidence identification(rHID)variants database;(3)The high confidence variants identified in single sample were ordered by probability value and controlled by false discovery rate(FDR)using rHID database;(4)To avoid the elimination of potentially true variants from rHID database,the vari-ants that failed FDR were reexamined to rescued potential true variants and ensured high accurate identification variants.The results indicated that the percent of concordant SNPs and Indels from Freebayes and GATK after our new method were significantly improved 12%-32%compared with raw variants and advantageously found low frequency variants of individual sheep involved several traits including nipples number(GPC5),scrapie pathology(PAPSS2),sea-sonal reproduction and litter size(GRM1),coat color(RAB27A),and lentivirus susceptibility(TMEM154).Conclusion The new method used the computational strategy to reduce the number of false positives,and simulta-neously improve the identification of genetic variants.This strategy did not incur any extra cost by using any addi-tional samples or sequencing data information and advantageously identified rare variants which can be important for practical applications of animal breeding.展开更多
Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bi...Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.展开更多
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi...Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.展开更多
Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.A...Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.As cloud computing has recently emerged as a dominant platform for running applications and storing data,digital forensics faces well-known challenges in the cloud,such as data inaccessibility,data and service volatility,and law enforcement lacks control over the cloud.To date,very little research has been done to develop efficient theory and practice for digital forensics in the cloud.In this paper,we present a novel framework,Cloud Foren,which systematically addresses the challenges of forensics in cloud computing.Cloud Foren covers the entire process of digital forensics,from the initial point of complaint to the final point where the evidence is confirmed.The key components of Cloud Foren address some challenges,which are unique to the cloud.The proposed forensic process allows cloud forensic examiner,cloud provider,and cloud customer collaborate naturally.We use two case studies to demonstrate the applicability of Cloud Foren.We believe Cloud Foren holds great promise for more precise and automatic digital forensics in a cloud computing environment.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The sec...Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The security and privacy issues persisting in cloud computing have proved to be an obstacle for its widespread adoption. In this paper, we look at these issues from a business perspective and how they are damaging the reputation of big companies. There is a literature review on the existing issues in cloud computing and how they are being tackled by the Cloud Service Providers (CSP). We propose a governing body framework which aims at solving these issues by establishing relationship amongst the CSPs in which the data about possible threats can be generated based on the previous attacks on other CSPs. The Governing Body will be responsible for Data Center control, Policy control, legal control, user awareness, performance evaluation, solution architecture and providing motivation for the entities involved.展开更多
Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum servic...Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.展开更多
Humans,as intricate beings driven by a multitude of emotions,possess a remarkable ability to decipher and respond to socio-affective cues.However,many individuals and machines struggle to interpret such nuanced signal...Humans,as intricate beings driven by a multitude of emotions,possess a remarkable ability to decipher and respond to socio-affective cues.However,many individuals and machines struggle to interpret such nuanced signals,including variations in tone of voice.This paper explores the potential of intelligent technologies to bridge this gap and improve the quality of conversations.In particular,the authors propose a real-time processing method that captures and evaluates emotions in speech,utilizing a terminal device like the Raspberry Pi computer.Furthermore,the authors provide an overview of the current research landscape surrounding speech emotional recognition and delve into our methodology,which involves analyzing audio files from renowned emotional speech databases.To aid incomprehension,the authors present visualizations of these audio files in situ,employing dB-scaled Mel spectrograms generated through TensorFlow and Matplotlib.The authors use a support vector machine kernel and a Convolutional Neural Network with transfer learning to classify emotions.Notably,the classification accuracies achieved are 70% and 77%,respectively,demonstrating the efficacy of our approach when executed on an edge device rather than relying on a server.The system can evaluate pure emotion in speech and provide corresponding visualizations to depict the speaker’s emotional state in less than one second on a Raspberry Pi.These findings pave the way for more effective and emotionally intelligent human-machine interactions in various domains.展开更多
In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunct...In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunctioning nodes generate wrong output during the run time. To detect such nodes, we create collaborative network between worker node (i.e. data node of Hadoop) and Master node (i.e. name node of Hadoop) with the help of trusted heartbeat framework (THF). We propose procedures to register node and to alter status of node based on reputation provided by other co-worker nodes.展开更多
In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterpr...In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterprises are migrating to this technology. The objective of this paper was to describe the opinions of enterprises about the benefits and challenges of cloud computing services in the private and public companies in South Lebanon. During 2019, a cross-sectional study which enrolled 29 enterprises used CC was conducted. The survey included questions on socio-demographic characteristics of representative of companies, and companies’ factors in reference to the technology, organization, and environment (TOE) framework. Most (58.6%) of companies were private and micro and SMEs sized (86.8%). The cost saving (75.0%), scalability and flexibility (75.9%), security (44.8%), and improved service delivery were the main benefits that cloud offer to the business. The security aspect, the cost, and the limited provision of infra-structure remain a challenge for the adoption of CC. In conclusion, the research reveals the potential for the development of CC and obstacles for successful implementation of this new technology.展开更多
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on...Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.展开更多
Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is pro...Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.展开更多
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware.
文摘Conventional gradient-based full waveform inversion (FWI) is a local optimization, which is highly dependent on the initial model and prone to trapping in local minima. Globally optimal FWI that can overcome this limitation is particularly attractive, but is currently limited by the huge amount of calculation. In this paper, we propose a globally optimal FWI framework based on GPU parallel computing, which greatly improves the efficiency, and is expected to make globally optimal FWI more widely used. In this framework, we simplify and recombine the model parameters, and optimize the model iteratively. Each iteration contains hundreds of individuals, each individual is independent of the other, and each individual contains forward modeling and cost function calculation. The framework is suitable for a variety of globally optimal algorithms, and we test the framework with particle swarm optimization algorithm for example. Both the synthetic and field examples achieve good results, indicating the effectiveness of the framework. .
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金supported by Macao FDCTMOST grant001/2015/AMJMacao FDCT grants 005/2016/A1, and 056/2017/A2
文摘Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.
基金supported by the National Natural Science Foundation of China (22078004)the Research Development Fund from Xi’an Jiaotong-Liverpool University (RDF-16-02-03 and RDF15-01-23)key program special fund (KSF-E-03)。
文摘Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.
文摘After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.
基金Superior Farms sheep producersIBEST for their supportfinancial support from the Idaho Global Entrepreneurial Mission
文摘Background Pan-genomics is a recently emerging strategy that can be utilized to provide a more comprehensive characterization of genetic variation.Joint calling is routinely used to combine identified variants across multiple related samples.However,the improvement of variants identification using the mutual support information from mul-tiple samples remains quite limited for population-scale genotyping.Results In this study,we developed a computational framework for joint calling genetic variants from 5,061 sheep by incorporating the sequencing error and optimizing mutual support information from multiple samples’data.The variants were accurately identified from multiple samples by using four steps:(1)Probabilities of variants from two widely used algorithms,GATK and Freebayes,were calculated by Poisson model incorporating base sequencing error potential;(2)The variants with high mapping quality or consistently identified from at least two samples by GATK and Freebayes were used to construct the raw high-confidence identification(rHID)variants database;(3)The high confidence variants identified in single sample were ordered by probability value and controlled by false discovery rate(FDR)using rHID database;(4)To avoid the elimination of potentially true variants from rHID database,the vari-ants that failed FDR were reexamined to rescued potential true variants and ensured high accurate identification variants.The results indicated that the percent of concordant SNPs and Indels from Freebayes and GATK after our new method were significantly improved 12%-32%compared with raw variants and advantageously found low frequency variants of individual sheep involved several traits including nipples number(GPC5),scrapie pathology(PAPSS2),sea-sonal reproduction and litter size(GRM1),coat color(RAB27A),and lentivirus susceptibility(TMEM154).Conclusion The new method used the computational strategy to reduce the number of false positives,and simulta-neously improve the identification of genetic variants.This strategy did not incur any extra cost by using any addi-tional samples or sequencing data information and advantageously identified rare variants which can be important for practical applications of animal breeding.
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.41972287 and 42090023)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS2022-00167197Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)+2 种基金in part by the National Research Foundation of Korea(NRF),Ministry of Education,through Basic Science Research Program under Grant NRF-2020R1I1A3066543in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.
文摘Since its birth in the early 90 's,digital forensics has been mainly focused on collecting and examining digital evidence from computers and networks that are controlled and owned by individuals or organizations.As cloud computing has recently emerged as a dominant platform for running applications and storing data,digital forensics faces well-known challenges in the cloud,such as data inaccessibility,data and service volatility,and law enforcement lacks control over the cloud.To date,very little research has been done to develop efficient theory and practice for digital forensics in the cloud.In this paper,we present a novel framework,Cloud Foren,which systematically addresses the challenges of forensics in cloud computing.Cloud Foren covers the entire process of digital forensics,from the initial point of complaint to the final point where the evidence is confirmed.The key components of Cloud Foren address some challenges,which are unique to the cloud.The proposed forensic process allows cloud forensic examiner,cloud provider,and cloud customer collaborate naturally.We use two case studies to demonstrate the applicability of Cloud Foren.We believe Cloud Foren holds great promise for more precise and automatic digital forensics in a cloud computing environment.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘Cloud computing is touted as the next big thing in the Information Technology (IT) industry, which is going to impact the businesses of any size and yet the security issue continues to pose a big threat on it. The security and privacy issues persisting in cloud computing have proved to be an obstacle for its widespread adoption. In this paper, we look at these issues from a business perspective and how they are damaging the reputation of big companies. There is a literature review on the existing issues in cloud computing and how they are being tackled by the Cloud Service Providers (CSP). We propose a governing body framework which aims at solving these issues by establishing relationship amongst the CSPs in which the data about possible threats can be generated based on the previous attacks on other CSPs. The Governing Body will be responsible for Data Center control, Policy control, legal control, user awareness, performance evaluation, solution architecture and providing motivation for the entities involved.
文摘Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.
文摘Humans,as intricate beings driven by a multitude of emotions,possess a remarkable ability to decipher and respond to socio-affective cues.However,many individuals and machines struggle to interpret such nuanced signals,including variations in tone of voice.This paper explores the potential of intelligent technologies to bridge this gap and improve the quality of conversations.In particular,the authors propose a real-time processing method that captures and evaluates emotions in speech,utilizing a terminal device like the Raspberry Pi computer.Furthermore,the authors provide an overview of the current research landscape surrounding speech emotional recognition and delve into our methodology,which involves analyzing audio files from renowned emotional speech databases.To aid incomprehension,the authors present visualizations of these audio files in situ,employing dB-scaled Mel spectrograms generated through TensorFlow and Matplotlib.The authors use a support vector machine kernel and a Convolutional Neural Network with transfer learning to classify emotions.Notably,the classification accuracies achieved are 70% and 77%,respectively,demonstrating the efficacy of our approach when executed on an edge device rather than relying on a server.The system can evaluate pure emotion in speech and provide corresponding visualizations to depict the speaker’s emotional state in less than one second on a Raspberry Pi.These findings pave the way for more effective and emotionally intelligent human-machine interactions in various domains.
文摘In cloud computing environment, as the infrastructure not owned by users, it is desirable that its security and integrity must be protected and verified time to time. In Hadoop based scalable computing setup, malfunctioning nodes generate wrong output during the run time. To detect such nodes, we create collaborative network between worker node (i.e. data node of Hadoop) and Master node (i.e. name node of Hadoop) with the help of trusted heartbeat framework (THF). We propose procedures to register node and to alter status of node based on reputation provided by other co-worker nodes.
文摘In the last few years, cloud computing (CC) has grown from being a promising business concept to one of the fastest growing segments of the IT industry. Many businesses including small, medium (SMEs) and large enterprises are migrating to this technology. The objective of this paper was to describe the opinions of enterprises about the benefits and challenges of cloud computing services in the private and public companies in South Lebanon. During 2019, a cross-sectional study which enrolled 29 enterprises used CC was conducted. The survey included questions on socio-demographic characteristics of representative of companies, and companies’ factors in reference to the technology, organization, and environment (TOE) framework. Most (58.6%) of companies were private and micro and SMEs sized (86.8%). The cost saving (75.0%), scalability and flexibility (75.9%), security (44.8%), and improved service delivery were the main benefits that cloud offer to the business. The security aspect, the cost, and the limited provision of infra-structure remain a challenge for the adoption of CC. In conclusion, the research reveals the potential for the development of CC and obstacles for successful implementation of this new technology.
基金supported by the Federal Railroad Administration (FRA)the National Academy of Science (NAS) IDEA program
文摘Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.
文摘Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.