To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
Computational models that ensure accurate and fast responses to the variations in operating conditions,such as the cell tem-perature and relative humidity(RH),are essential monitoring tools for the real-time control o...Computational models that ensure accurate and fast responses to the variations in operating conditions,such as the cell tem-perature and relative humidity(RH),are essential monitoring tools for the real-time control of proton exchange membrane(PEM)fuel cells.To this end,fast cell-area-averaged numerical simulations are developed and verifi ed against the present experiments under various RH levels.The present simulations and measurements are found to agree well based on the cell voltage(polarization curve)and power density under variable RH conditions(RH=40%,RH=70%,and RH=100%),which verifi es the model accuracy in predicting PEM fuel cell performance.In addition,computationally feasible reduced-order models are found to deliver a fast output dataset to evaluate the charge/heat/mass transfer phenomena as well as water production and two-phase fl ow transport.Such fast and accurate evaluations of the overall fuel cell operation can be used to inform the real-time control systems that allow for the improved optimization of PEM fuel cell performance.展开更多
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb...Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.展开更多
The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliab...The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.展开更多
The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper intr...The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.展开更多
Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regardi...Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regarding the prob-lems of producing a perfect software scheme. Traditional approaches or recy-cling software are not effective to solve the problems concerning software competence. Since fast developments with software engineering in the past few years, studies show that some approaches are getting extensive attention in both industries and universities. This method is categorized as the software product line improvement;that supports reusing of software in big organizations. Different industries are adopting product lines to enhance efficiency and reduce operational expenses by way of emerging product developments. This research paper is formed to offer in-depth study regarding the software engineering issues such as complexity, conformity, changeability, invisibility, time constraints, budget constraints, and security. We have conducted various research surveys by visiting different professional software development organizations and took feedback from the professional software engineers to analyze the real-time problems that they are facing during the development process of software systems. Survey results proved that complexity is a most occurring issue that most software developers face while developing software applications. Moreover, invisibility is the problem that rarely happens according to the survey.展开更多
In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the grow...In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.展开更多
Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has ...Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has also received extensive attention,especially in certain network scenarios with high security requirement.Due to the existence of vulnerabilities and heavy overhead,the existing firewalls and distributed control technologies cannot solve the control plane security problem well.In this paper,we propose a distributed control architecture for SDON using the blockchain technique(BlockCtrl).The proposed BlockCtrl model introduces the advantages of blockchain into SDON to achieve a high-efficiency fault tolerant control.We have evaluated the performance of our proposed architecture and compared it to the existing models with respect to various metrics including processing rate,recovery latency and etc.The numerical results show that the BlockCtrl is capable of attacks detection and fault tolerant control in SDON with high performance on resource utilization and service correlation.展开更多
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s...Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.展开更多
A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operati...A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy.展开更多
Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,per...To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...展开更多
Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these char...Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.展开更多
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ...A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.展开更多
The previous operation of the ZLS-Burris gravity meter using a PDA already provides a significant improvement of the operation of a metal spring gravity meter. But in the practical field work the observer usually wish...The previous operation of the ZLS-Burris gravity meter using a PDA already provides a significant improvement of the operation of a metal spring gravity meter. But in the practical field work the observer usually wishes more information about the measurement and the collected data. This situation sug- gested an improvement of the software and computer hardware. The goal was to develop a small useful PC tool that eliminates these deficits. However, it resulted in a very extensive application software, which was developed during 2011-2015. Along the way, some unwanted effects of the original control circuit were detected. Therefore as a last step a complete new control circuit for the feedback system was developed. This new circuit is fast and smooth and without resonance effects to the system. The algorithm parameters can be specifically adapted to the specific gravity meter. The software has a security system that ensures the user, depending on his level of knowledge, a limited access to the software options. Furthermore, a customer project management system is integrated. The observer, the gravity meters, the projects and maps can be assigned. Several ZLS Burris gravity meters can be managed. A large station data management is integrated. Every station has up to more than twenty parameters, such as the mandatory coordinates or supplementary pictures of the station. External storage and documentation of the measurements are possible with extra modules. In addition the maintenance of the gravity meter system is significantly improved. The motor control of the early ZLS Burris gravity meter is also improved. The complete rotation is displayed on the screen. Finally, two survey examples show the advantages of the software related to the accuracy and the time needed for a measurement.展开更多
A new method that designs and implements the component-based distributed & hierarchical flexible manufacturing control software is described with a component concept in this paper. The proposed method takes aim at...A new method that designs and implements the component-based distributed & hierarchical flexible manufacturing control software is described with a component concept in this paper. The proposed method takes aim at improving the flexibility and reliability of the control system. On the basis of describing the concepts of component-based software and the distributed object technology, the architecture of the component-based software of the control system is suggested with the Common Object Request Broker Architecture (CORBA). And then, we propose a design method for component-based distributed & hierarchical flexible manufacturing control system. Finally, to verify the software design method, a prototype flexible manufacturing control system software has been implemented in Orbix 2.3c, VC + + 6. 0 and has been tested in connection with the physical flexible manufacturing shop at the WuXi Professional Institute.展开更多
Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed i...Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.展开更多
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc...With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.
基金by the Natural Sciences and Engineering Research Council of Canada(NSERC)via a Discovery Grant,Canadian Urban Transit Research and Innovation Consortium(CUTRIC)(No.160028).
文摘Computational models that ensure accurate and fast responses to the variations in operating conditions,such as the cell tem-perature and relative humidity(RH),are essential monitoring tools for the real-time control of proton exchange membrane(PEM)fuel cells.To this end,fast cell-area-averaged numerical simulations are developed and verifi ed against the present experiments under various RH levels.The present simulations and measurements are found to agree well based on the cell voltage(polarization curve)and power density under variable RH conditions(RH=40%,RH=70%,and RH=100%),which verifi es the model accuracy in predicting PEM fuel cell performance.In addition,computationally feasible reduced-order models are found to deliver a fast output dataset to evaluate the charge/heat/mass transfer phenomena as well as water production and two-phase fl ow transport.Such fast and accurate evaluations of the overall fuel cell operation can be used to inform the real-time control systems that allow for the improved optimization of PEM fuel cell performance.
文摘Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.
基金supported by the Aviation Science Foundation of China
文摘The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.
文摘The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.
文摘Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regarding the prob-lems of producing a perfect software scheme. Traditional approaches or recy-cling software are not effective to solve the problems concerning software competence. Since fast developments with software engineering in the past few years, studies show that some approaches are getting extensive attention in both industries and universities. This method is categorized as the software product line improvement;that supports reusing of software in big organizations. Different industries are adopting product lines to enhance efficiency and reduce operational expenses by way of emerging product developments. This research paper is formed to offer in-depth study regarding the software engineering issues such as complexity, conformity, changeability, invisibility, time constraints, budget constraints, and security. We have conducted various research surveys by visiting different professional software development organizations and took feedback from the professional software engineers to analyze the real-time problems that they are facing during the development process of software systems. Survey results proved that complexity is a most occurring issue that most software developers face while developing software applications. Moreover, invisibility is the problem that rarely happens according to the survey.
基金This work is supported by the Fundamental Research Funds for the Central Universities.
文摘In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.
基金supported in part by NSFC project(61871056)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+1 种基金Fundamental Research Funds for the Central Universities(2018XKJC06)Open Fund of SKL of IPOC(BUPT)(IPOC2018A001)
文摘Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has also received extensive attention,especially in certain network scenarios with high security requirement.Due to the existence of vulnerabilities and heavy overhead,the existing firewalls and distributed control technologies cannot solve the control plane security problem well.In this paper,we propose a distributed control architecture for SDON using the blockchain technique(BlockCtrl).The proposed BlockCtrl model introduces the advantages of blockchain into SDON to achieve a high-efficiency fault tolerant control.We have evaluated the performance of our proposed architecture and compared it to the existing models with respect to various metrics including processing rate,recovery latency and etc.The numerical results show that the BlockCtrl is capable of attacks detection and fault tolerant control in SDON with high performance on resource utilization and service correlation.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003,2017YFC1405300)
文摘Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.
基金The Project of Beijing Science and Technology Committee (No.020620010120) ,the Hi_Tech Research and Development Program(863) of China (No.2004AA601020) ,the Project under Key International Cooperative Programs of NSFC(No.50521140075) and the Project of Key Laboratory of Beiing
文摘A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
文摘To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...
基金The National High Technology Research&Development Program of China under contract No.2012AA10A411the National Natural Science Foundation of China under contract Nos 41176151 and 41276177
文摘Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.
基金National Natural Science Foundation of China(No.50539120)National Basic Research Program of China("973"Program,No. 2007 CB714101)+1 种基金National Science Fund for Distinguished Young Scholars of China(No.50525927)National Natural Science Founda-tion of China(No.50579045)
文摘A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
文摘The previous operation of the ZLS-Burris gravity meter using a PDA already provides a significant improvement of the operation of a metal spring gravity meter. But in the practical field work the observer usually wishes more information about the measurement and the collected data. This situation sug- gested an improvement of the software and computer hardware. The goal was to develop a small useful PC tool that eliminates these deficits. However, it resulted in a very extensive application software, which was developed during 2011-2015. Along the way, some unwanted effects of the original control circuit were detected. Therefore as a last step a complete new control circuit for the feedback system was developed. This new circuit is fast and smooth and without resonance effects to the system. The algorithm parameters can be specifically adapted to the specific gravity meter. The software has a security system that ensures the user, depending on his level of knowledge, a limited access to the software options. Furthermore, a customer project management system is integrated. The observer, the gravity meters, the projects and maps can be assigned. Several ZLS Burris gravity meters can be managed. A large station data management is integrated. Every station has up to more than twenty parameters, such as the mandatory coordinates or supplementary pictures of the station. External storage and documentation of the measurements are possible with extra modules. In addition the maintenance of the gravity meter system is significantly improved. The motor control of the early ZLS Burris gravity meter is also improved. The complete rotation is displayed on the screen. Finally, two survey examples show the advantages of the software related to the accuracy and the time needed for a measurement.
基金Supported by National High Technology Development plan(Item No.:2001AA412250)and Shanghai Science & Technology Development Project(Item No.:02FK04)
文摘A new method that designs and implements the component-based distributed & hierarchical flexible manufacturing control software is described with a component concept in this paper. The proposed method takes aim at improving the flexibility and reliability of the control system. On the basis of describing the concepts of component-based software and the distributed object technology, the architecture of the component-based software of the control system is suggested with the Common Object Request Broker Architecture (CORBA). And then, we propose a design method for component-based distributed & hierarchical flexible manufacturing control system. Finally, to verify the software design method, a prototype flexible manufacturing control system software has been implemented in Orbix 2.3c, VC + + 6. 0 and has been tested in connection with the physical flexible manufacturing shop at the WuXi Professional Institute.
基金National Science Foundation Graduate Research Fellowship
文摘Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.
基金This work was supported in part by the National Nature Science Foundation of China(51922059)in part by the Beijing Natural Science Foundation(JQ19010)in part by the China Postdoctoral Science Foundation(2021T140371).
文摘With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.