期刊文献+
共找到4,615篇文章
< 1 2 231 >
每页显示 20 50 100
Real-Time Intelligent Diagnosis of Co-frequency Vibration Faults in Rotating Machinery Based on Lightweight-Convolutional Neural Networks
1
作者 Xin Pan Xiancheng Zhang +1 位作者 Zhinong Jiang Guangfu Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期264-282,共19页
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the... The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance. 展开更多
关键词 Co-frequency vibration real-time diagnosis LW-CNN data augmentation
下载PDF
Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
2
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc... A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature. 展开更多
关键词 Traffic flow prediction sptiotemporal data heterogeneous data Conv-BiLSTM data-CENTRIC intra-data
下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
3
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:2
4
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning MONITORING real-time prediction data analysis
下载PDF
DuFNet:Dual Flow Network of Real-Time Semantic Segmentation for Unmanned Driving Application of Internet of Things 被引量:1
5
作者 Tao Duan Yue Liu +2 位作者 Jingze Li Zhichao Lian d Qianmu Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期223-239,共17页
The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving sy... The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone. 展开更多
关键词 real-time semantic segmentation convolutional neural network feature fusion unmanned driving fringe information flow
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
6
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience real-time Threat Analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
7
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Analysing Traffic Flow and Traffic Hotspots from Historic and Real-Time GPS Data
8
作者 Christopher Bartolo Thiago Matos Pinto 《通讯和计算机(中英文版)》 2015年第6期318-325,共8页
关键词 交通流分析 数据分析 历史 实时 数据采集方法 全球定位系统 道路网络 数据收集
下载PDF
Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management 被引量:1
9
作者 孙璐 张惠民 +3 位作者 高荣 顾文钧 徐冰 陈鲤梁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期174-179,共6页
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ... Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc. 展开更多
关键词 traffic flow patterns Gaussian mixture model level of service data mining cluster analysis CLASSIFIER
下载PDF
High-SpeedReal-TimeDataAcquisitionSystem Realized by Interleaving/Multiplexing Technique 被引量:1
10
作者 吕洁 莫毅群 罗伟雄 《Journal of Beijing Institute of Technology》 EI CAS 2000年第2期183-188,共6页
The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv... The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate. 展开更多
关键词 real-time data acquisition interleaving/multiplexing high-speed AD converter
下载PDF
Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model 被引量:1
11
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computers, Materials & Continua》 SCIE EI 2023年第9期3097-3112,共16页
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo... Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%. 展开更多
关键词 Heterogeneous data traffic flow prediction deep learning CNN LSTM
下载PDF
Quality control of marine big data——a case study of real-time observation station data in Qingdao 被引量:6
12
作者 QIAN Chengcheng LIU Aichao +4 位作者 HUANG Rui LIU Qingrong XU Wenkun ZHONG Shan YU Le 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1983-1993,共11页
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s... Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height. 展开更多
关键词 quality control real-time STATION data MARINE BIG data Xiaomaidao STATION MARINE DISASTER
下载PDF
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:4
13
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system data network Wide-frequency information real-time system Traffic analysis Optimization strategy
下载PDF
A multi-sensor-based distributed real-time measurement system for glacier deformation
14
作者 DONG Han-chuan LIU Shuang +4 位作者 PANG Li-li TAO Zhi-gang FANG Li-de ZHANG Zhong-hua LI Xiao-ting 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2913-2927,共15页
Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this stud... Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation. 展开更多
关键词 Glacier disasters Distributed deformation measurement MULTI-SENSOR real-time LoRa data adaptive.
下载PDF
Real-time Three-Dimensional Color Doppler Flow Imaging: An Improved Technique for Quantitative Analysis of Aortic Regurgitation 被引量:3
15
作者 吕清 刘夏天 +3 位作者 谢明星 王新房 王静 庄磊 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第1期148-152,共5页
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT... The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF. 展开更多
关键词 real-time three-dimensional echocardiography color Doppler flow imaging aortic regurgitation
下载PDF
Design and FPGA verification of a novel reliable real-time data transfer system 被引量:2
16
作者 Yu-ping LIAN Yan HAN +2 位作者 Ming-xu HUO Jin-long CHEN Yan ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1406-1410,共5页
Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable ga... Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable gate array) implementation of a novel reliable real-time data transfer system based on EPA (Ethemet for plant automation) protocol and IEEE 1588 standard. This combination can provide more predictable and real-time communication between automation equipments and precise synchronization between devices. The designed EPA system has been verified on Xilinx Spartan3 XC3S1500 and it consumed 75% of the total slices. The experimental results show that the novel industrial control system achieves high synchronization precision and provides a 1.59-ps standard deviation between the master device and the slave ones. Such a real-time data transfer system is an excellent candidate for automation equipments which require precise synchronization based on Ethemet at a comparatively low price. 展开更多
关键词 Ethemet for plant automation (EPA) IEEE 1588 Precise synchronization real-time data transfer
下载PDF
Design and development of real-time query platform for big data based on hadoop 被引量:1
17
作者 刘小利 Xu Pandeng +1 位作者 Liu Mingliang Zhu Guobin 《High Technology Letters》 EI CAS 2015年第2期231-238,共8页
This paper designs and develops a framework on a distributed computing platform for massive multi-source spatial data using a column-oriented database(HBase).This platform consists of four layers including ETL(extract... This paper designs and develops a framework on a distributed computing platform for massive multi-source spatial data using a column-oriented database(HBase).This platform consists of four layers including ETL(extraction transformation loading) tier,data processing tier,data storage tier and data display tier,achieving long-term store,real-time analysis and inquiry for massive data.Finally,a real dataset cluster is simulated,which are made up of 39 nodes including 2 master nodes and 37 data nodes,and performing function tests of data importing module and real-time query module,and performance tests of HDFS's I/O,the MapReduce cluster,batch-loading and real-time query of massive data.The test results indicate that this platform achieves high performance in terms of response time and linear scalability. 展开更多
关键词 big data massive data storage real-time query HADOOP distributed computing
下载PDF
Web-based GIS System for Real-time Field Data Collection Using Personal Mobile Phone 被引量:2
18
作者 Ko Ko Lwin Yuji Murayama 《Journal of Geographic Information System》 2011年第4期382-389,共8页
Recently, use of mobile communicational devices in field data collection is increasing such as smart phones and cellular phones due to emergence of embedded Global Position System GPS and Wi-Fi Internet access. Accura... Recently, use of mobile communicational devices in field data collection is increasing such as smart phones and cellular phones due to emergence of embedded Global Position System GPS and Wi-Fi Internet access. Accurate timely and handy field data collection is required for disaster management and emergency quick responses. In this article, we introduce web-based GIS system to collect the field data by personal mobile phone through Post Office Protocol POP3 mail server. The main objective of this work is to demonstrate real-time field data collection method to the students using their mobile phone to collect field data by timely and handy manners, either individual or group survey in local or global scale research. 展开更多
关键词 WEB-BASED GIS System real-time Field data Collection PERSONAL Mobile PHONE POP3 MAIL Server
下载PDF
Scheduling transactions in mobile distributed real-time database systems 被引量:1
19
作者 雷向东 赵跃龙 +1 位作者 陈松乔 袁晓莉 《Journal of Central South University of Technology》 EI 2008年第4期545-551,共7页
A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environment... A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols. 展开更多
关键词 mobile distributed real-time database systems muliversion optimistic concurrency control multiversion dynamic adjustment pre-validation multiversion data broadcast
下载PDF
Integrated Real-Time Big Data Stream Sentiment Analysis Service 被引量:1
20
作者 Sun Sunnie Chung Danielle Aring 《Journal of Data Analysis and Information Processing》 2018年第2期46-66,共21页
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o... Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature. 展开更多
关键词 SENTIMENT ANALYSIS real-time Text ANALYSIS OPINION ANALYSIS BIG data An-alytics
下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部