Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode ...Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.展开更多
A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculat...A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A rev...A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.展开更多
Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color...Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).展开更多
By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The...By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.展开更多
The principles and applications of laser real-time holographic interferometry (LRTHI) and radar differential interferometry (RDI) technologies are described in this paper, respectively. By using LRTHI, we can obse...The principles and applications of laser real-time holographic interferometry (LRTHI) and radar differential interferometry (RDI) technologies are described in this paper, respectively. By using LRTHI, we can observe the deformation of samples under pressure in the lab and study the anomaly characteristics relating to different strain fields in different fracture-developing areas; while by using RDI, we can observe the landform and surface deformation. The results of deformation observed before and after the Ms=7.9 Mani earthquake (Tibet) and Ms=6.2 Shangyi-Zhangbei earthquake in China are obtained. It is pointed out that LRTHI and RDi are similar, which study the characteristics of anomalous deformation field by fringe variations for both of them. Therefore, the observation of deformation field in the seismogenic process, especially in the period impending an earthquake by RDI, and the comparative study in the lab by LRTHI are of great significance.展开更多
Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.The pathogen is seedtransmitted,so seed detection to prevent distribution of contaminated seed is crucial in dise...Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.The pathogen is seedtransmitted,so seed detection to prevent distribution of contaminated seed is crucial in disease management.In this study,we adapted a quantitative real-time PCR(qPCR)assay to droplet digital PCR(ddPCR)format for A.citrulli detection by optimizing reaction conditions.The performance of ddPCR in detecting A.citrulli pure culture,DNA,infested watermelon/melon seed and commercial seed samples were compared with multiplex PCR,qPCR,and dilution plating method.The lowest concentrations detected(LCD)by ddPCR reached up to 2 fg DNA,and 102 CFU mL–1 bacterial cells,which were ten times more sensitive than those of the qPCR.When testing artificially infested watermelon and melon seed,0.1%infestation level was detectable using ddPCR and dilution plating method.The 26 positive samples were identified in 201 commercial seed samples through ddPCR,which was the highest positive number among all the methods.High detection sensitivity achieved by ddPCR demonstrated a promising technique for improving seed-transmitted pathogen detection threshold in the future.展开更多
A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of...A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of the two methods for H9 were determined by gradient dilution using the same pair of primers and probes. Both methods were able to detect 104 times diluted H9 pathogens, while digital RT-PCR could detect H9 in single droplets, and its sensitivity was higher than real-time quantitative RT-PCR. At the same time, the specificities of both methods were very strong, with no amplification reactions for H3N2, H4N2, H6N2. The reproducibility of the two methods were also good. Digital RT-PCR has a higher sensitivity than real-time quantitative RT-PCR and could play an important role in the rapid detection of H9 subtype influenza virus.展开更多
Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violat...Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violated w ay is one of most important issues to take into account. In this paper, a novel and efficient authorization and authentication Digital Rights Management (DRM) s chema is proposed firstly for secure multimedia delivery, then based on the sche ma, a real-time digital signature algorithm built on Elliptic Curve Cryptograph y (ECC) is adopted for fast authentication and verification of licensing managem ent, thus secure multimedia delivery via TCP/RTP can efficiently work with real -time transaction response and high Quality of Service (QoS) . Performance eval uations manifest the proposed schema is secure, available for real-time media s tream authentication and authorization without much effected of QoS. The propose d schema is not only available for Client/Server media service but can be easily extended to P2P and broadcasting network for trusted rights management.展开更多
The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus(ZIKV)and in preventing serious neurological complications of ZIKV infection. In this study, we esta...The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus(ZIKV)and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction(ddPCR) and real-time quantitative PCR(RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold(Ct) value was linear from 10~1 to 10~8 copy/l L, with a standard curve R^2 of 0.999 and amplification efficiency of 92.203%;however, a concentration as low as 1 copy/l L could not be detected. In comparison with RT-qPCR, the dd PCR method resulted in a linear range of 10~1–10~4 copy/l L and was able to detect concentrations as low as 1 copy/l L. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples(above 10~1 copy/l L),while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.展开更多
An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field...An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.展开更多
In this paper a fast digital real-time spectrometer was developed for timing and analysis of nuclear pulse signals. The hardware system design and algorithm implementation with field-programming gate array (FPGA) an...In this paper a fast digital real-time spectrometer was developed for timing and analysis of nuclear pulse signals. The hardware system design and algorithm implementation with field-programming gate array (FPGA) and digital signal processor (DSP) were introduced. The performance of the digital constant fraction discrimination (dCFD) platform was experimentally tested with Agilent 80 MHz function/arbitrary waveform generator and LaC13:Ce3+ scintillator detector for 22Na positron annihilation gamma spectroscopy. The amplitude and time information of "/photon was online obtained. The energy resolution could be 5.525% and the timing resolution 293.75 ps, the system error estimation of dCFD approach was also studied. The results showed that this spectrometer achieved a timing resolution close to that of traditional CFD timing resolution with a more sim- plified system structure.展开更多
Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on th...Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on the production safety and efficiency of a shop-floor,however,because of the high individual initiative of humans,it is difficult to realize real-time action detection in a digital twin shop-floor.Methods:We proposed a real-time detection approach for shop-floor production action.This approach used the sequence data of continuous human skeleton joints sequences as the input.We then reconstructed the Joint Classification-Regression Recurrent Neural Networks(JCR-RNN)based on Temporal Convolution Network(TCN)and Graph Convolution Network(GCN).We called this approach the Temporal Action Detection Net(TAD-Net),which realized real-time shop-floor production action detection.Results:The results of the verification experiment showed that our approach has achieved a high temporal positioning score,recognition speed,and accuracy when applied to the existing Online Action Detection(OAD)dataset and the Nanjing University of Science and Technology 3 Dimensions(NJUST3D)dataset.TAD-Net can meet the actual needs of the digital twin shop-floor.Conclusions:Our method has higher recognition accuracy,temporal positioning accuracy,and faster running speed than other mainstream network models,it can better meet actual application requirements,and has important research value and practical significance for standardizing shop-floor production processes,reducing production security risks,and contributing to the understanding of real-time production action.展开更多
International movement plays an important role in spatial spread of infectious diseases.Here,we share two successful COVID-19 interventions based on real-time digital information collected from international passenger...International movement plays an important role in spatial spread of infectious diseases.Here,we share two successful COVID-19 interventions based on real-time digital information collected from international passengers,which have been performed in Greece and China respectively.Both of the interventions demonstrated good performance and showed the potential of real-time digital data in containing the spread.However,several key points should not be ignored when we promote similar strategies.展开更多
The experimental apparatus to measure the mass diffusion coefficients of O2 in aviation fuel was constructed based on the digital holographic interferometry method. The theory of mass diffusion coefficient and interfe...The experimental apparatus to measure the mass diffusion coefficients of O2 in aviation fuel was constructed based on the digital holographic interferometry method. The theory of mass diffusion coefficient and interference image processing were introduced in detail. The accuracy of the experiment was verified by measuring the mass diffusion coefficient of 0.33 mol/L KCl in aqueous solution at 298.15 K. The mass diffusion coefficients of O_2 in RP3 and RP5 aviation fuels were measured at temperature from 278.15 K to 333.15 K, and the Arrhenius equation was employed to fit the experimental data. In terms of the Stokes-Einstein equation, the viscosities of these two aviation fuels were tested to estimate the correlation among mass diffusion coefficient, viscosity and temperature. A uniform polynomial calculation correlation was proposed to predict the mass diffusion coefficients of O_2 in both RP3 and RP5 aviation fuels, and its accuracy is considerably higher than that of the Stokes-Einstein equation.展开更多
基金supported by the National Natural Science Foundation of China(No.22075115)Natural Science Foundation of Jiangsu Province(No.BK20211352)+2 种基金Joint Funds of the National Natural Science Foundation of China(No.U2141201)Natural Science Foundation(No.22KJA430005)of Jiangsu Education Committee of ChinaPostgraduate Research and Practice Innovation Program of Jiangsu Normal University(No.2021XKT0296).
文摘Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.
基金Supported by the National Natural Science Foundation of China under Grant No 50575074by the Scientific and TechnologicalProject of Guangdong Province, China, under Grant No 2003A1040310
文摘A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also
文摘A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.
基金This work was supported by National Natural Science Foundation of China(91850202,61775085,11774256)Natural Science Foundation of Guangdong Province(2016A030312010,2020A1515010958)Science and Technology Innovation Commission of Shenzhen(KQTD2017033011044403,ZDSYS201703031605029).
文摘Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).
基金Project supported by the Foundation of Science and Technology Department of Shaanxi Province,China(Grant No.2018JQ6009)the Foundation of Education Department of Shaanxi Province,China(Grant No.17JK1165)+4 种基金the Beijing Natural Science Foundation,China(Grant No.Z190004)the National Natural Science Foundation of China(Grant No.61575197)the Innovation Capability Improvement Plan,Hebei Province,China(Grant No.20540302D)the Fundamental Research Funds for the Central Universities,China,the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2017489)the Natural Science Foundation of Hebei Province,China(Grant No.F2018402285).
文摘By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.
基金Joint Seismological Science Foundation of China (201012).
文摘The principles and applications of laser real-time holographic interferometry (LRTHI) and radar differential interferometry (RDI) technologies are described in this paper, respectively. By using LRTHI, we can observe the deformation of samples under pressure in the lab and study the anomaly characteristics relating to different strain fields in different fracture-developing areas; while by using RDI, we can observe the landform and surface deformation. The results of deformation observed before and after the Ms=7.9 Mani earthquake (Tibet) and Ms=6.2 Shangyi-Zhangbei earthquake in China are obtained. It is pointed out that LRTHI and RDi are similar, which study the characteristics of anomalous deformation field by fringe variations for both of them. Therefore, the observation of deformation field in the seismogenic process, especially in the period impending an earthquake by RDI, and the comparative study in the lab by LRTHI are of great significance.
基金supported by the the National Key Research and Development Program of China (2017YFD0201602)the National Natural Science Foundation of China (31401704)the Beijing Academy of Agriculture and Forestry Foundation, China (KJCX20180203)
文摘Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.The pathogen is seedtransmitted,so seed detection to prevent distribution of contaminated seed is crucial in disease management.In this study,we adapted a quantitative real-time PCR(qPCR)assay to droplet digital PCR(ddPCR)format for A.citrulli detection by optimizing reaction conditions.The performance of ddPCR in detecting A.citrulli pure culture,DNA,infested watermelon/melon seed and commercial seed samples were compared with multiplex PCR,qPCR,and dilution plating method.The lowest concentrations detected(LCD)by ddPCR reached up to 2 fg DNA,and 102 CFU mL–1 bacterial cells,which were ten times more sensitive than those of the qPCR.When testing artificially infested watermelon and melon seed,0.1%infestation level was detectable using ddPCR and dilution plating method.The 26 positive samples were identified in 201 commercial seed samples through ddPCR,which was the highest positive number among all the methods.High detection sensitivity achieved by ddPCR demonstrated a promising technique for improving seed-transmitted pathogen detection threshold in the future.
文摘A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of the two methods for H9 were determined by gradient dilution using the same pair of primers and probes. Both methods were able to detect 104 times diluted H9 pathogens, while digital RT-PCR could detect H9 in single droplets, and its sensitivity was higher than real-time quantitative RT-PCR. At the same time, the specificities of both methods were very strong, with no amplification reactions for H3N2, H4N2, H6N2. The reproducibility of the two methods were also good. Digital RT-PCR has a higher sensitivity than real-time quantitative RT-PCR and could play an important role in the rapid detection of H9 subtype influenza virus.
文摘Media Commerce is now becoming a new trend which results fr om faster development of network bandwidth and high availability of multimedia t echnologies, how to protect media content from being used in a right-violated w ay is one of most important issues to take into account. In this paper, a novel and efficient authorization and authentication Digital Rights Management (DRM) s chema is proposed firstly for secure multimedia delivery, then based on the sche ma, a real-time digital signature algorithm built on Elliptic Curve Cryptograph y (ECC) is adopted for fast authentication and verification of licensing managem ent, thus secure multimedia delivery via TCP/RTP can efficiently work with real -time transaction response and high Quality of Service (QoS) . Performance eval uations manifest the proposed schema is secure, available for real-time media s tream authentication and authorization without much effected of QoS. The propose d schema is not only available for Client/Server media service but can be easily extended to P2P and broadcasting network for trusted rights management.
基金supported by the National Natural Science Foundation of China (Nos. 31470271 and 81730110)Guangzhou Science and Technology Program key projects (No. 201803040006)
文摘The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus(ZIKV)and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction(ddPCR) and real-time quantitative PCR(RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold(Ct) value was linear from 10~1 to 10~8 copy/l L, with a standard curve R^2 of 0.999 and amplification efficiency of 92.203%;however, a concentration as low as 1 copy/l L could not be detected. In comparison with RT-qPCR, the dd PCR method resulted in a linear range of 10~1–10~4 copy/l L and was able to detect concentrations as low as 1 copy/l L. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples(above 10~1 copy/l L),while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.
基金Research presented in this paper was funded by the National Key Research and Development Program of China[grant numbers 2016YFB0501503 and 2016YFB0501502]Hainan Provincial Department of Science and Technology[grant number ZDKJ2016021].
文摘An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.
基金supported by the National Natural Science Foundation of China (Grant No. 10975132)
文摘In this paper a fast digital real-time spectrometer was developed for timing and analysis of nuclear pulse signals. The hardware system design and algorithm implementation with field-programming gate array (FPGA) and digital signal processor (DSP) were introduced. The performance of the digital constant fraction discrimination (dCFD) platform was experimentally tested with Agilent 80 MHz function/arbitrary waveform generator and LaC13:Ce3+ scintillator detector for 22Na positron annihilation gamma spectroscopy. The amplitude and time information of "/photon was online obtained. The energy resolution could be 5.525% and the timing resolution 293.75 ps, the system error estimation of dCFD approach was also studied. The results showed that this spectrometer achieved a timing resolution close to that of traditional CFD timing resolution with a more sim- plified system structure.
基金This work was supported by the National Key Research and Development Program,China(2020YFB1708400)the National Defense Fundamental Research Program,China(JCKY2020210B006,JCKY2017204B053)awarded to TL.
文摘Background:Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly.Human action has a significant impact on the production safety and efficiency of a shop-floor,however,because of the high individual initiative of humans,it is difficult to realize real-time action detection in a digital twin shop-floor.Methods:We proposed a real-time detection approach for shop-floor production action.This approach used the sequence data of continuous human skeleton joints sequences as the input.We then reconstructed the Joint Classification-Regression Recurrent Neural Networks(JCR-RNN)based on Temporal Convolution Network(TCN)and Graph Convolution Network(GCN).We called this approach the Temporal Action Detection Net(TAD-Net),which realized real-time shop-floor production action detection.Results:The results of the verification experiment showed that our approach has achieved a high temporal positioning score,recognition speed,and accuracy when applied to the existing Online Action Detection(OAD)dataset and the Nanjing University of Science and Technology 3 Dimensions(NJUST3D)dataset.TAD-Net can meet the actual needs of the digital twin shop-floor.Conclusions:Our method has higher recognition accuracy,temporal positioning accuracy,and faster running speed than other mainstream network models,it can better meet actual application requirements,and has important research value and practical significance for standardizing shop-floor production processes,reducing production security risks,and contributing to the understanding of real-time production action.
基金the National Key Research and Development Program of ChinaScientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence(Grant No.2021zD0111201)+4 种基金National Key Program of Research and Development(Grant No.2022YFC2303803)National Natural Science Foundation of China(Grant Nos.82073616 and 32170418)Beijing Advanced Innovation Program for Land Surface Science(Grant No.110631111)Fundamental Research Funds for the Central Universities(Grant No.2021NTST17)Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region(Grant No.2021ZD0006).
文摘International movement plays an important role in spatial spread of infectious diseases.Here,we share two successful COVID-19 interventions based on real-time digital information collected from international passengers,which have been performed in Greece and China respectively.Both of the interventions demonstrated good performance and showed the potential of real-time digital data in containing the spread.However,several key points should not be ignored when we promote similar strategies.
基金supported by the Aeronautical Science Foundation of China(No.20132852040)the Fundation of Graduate Innovation Center in NUAA(No.kfjj20170116)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The experimental apparatus to measure the mass diffusion coefficients of O2 in aviation fuel was constructed based on the digital holographic interferometry method. The theory of mass diffusion coefficient and interference image processing were introduced in detail. The accuracy of the experiment was verified by measuring the mass diffusion coefficient of 0.33 mol/L KCl in aqueous solution at 298.15 K. The mass diffusion coefficients of O_2 in RP3 and RP5 aviation fuels were measured at temperature from 278.15 K to 333.15 K, and the Arrhenius equation was employed to fit the experimental data. In terms of the Stokes-Einstein equation, the viscosities of these two aviation fuels were tested to estimate the correlation among mass diffusion coefficient, viscosity and temperature. A uniform polynomial calculation correlation was proposed to predict the mass diffusion coefficients of O_2 in both RP3 and RP5 aviation fuels, and its accuracy is considerably higher than that of the Stokes-Einstein equation.