The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed i...The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurised systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30% to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption. A balance between the improvement in water use and the potential increase in energy consumption is required. When surface water is used, pressurised irrigation systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation systems so their use should be carefully planned keeping in view adverse impact of carbon emissions on the environment and threat of increasing energy prices. With gravity-fed surface irrigation methods, the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimisation and gravity fed surface irrigation with real-time optimisation has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is equivalent to that given by pressurised systems. The real-time optimisation and control thus offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.展开更多
In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truc...In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.展开更多
The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch ...The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.展开更多
Tobacco mosaic virus(TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here,...Tobacco mosaic virus(TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here, we developed a simple method for the detection and quantification of TMV in irrigation water. TMV was reliably detected at concentrations as low as 10 viral copies/μL with real-time PCR. The sensitivity of detection was further improved using polyethylene glycol 6000(PEG6000, MW 6000) to concentrate TMV from water samples. Among the 28 samples from Shaanxi Province examined with our method, 17 were tested positive after virus concentration. Infectivity of TMV in the original water sample as well as after concentration was confirmed using PCR. The limiting concentration of TMV in water to re-infect plants was determined as 102 viral copies/mL. The method developed in this study offers a novel approach to detect TMV in irrigation water, and may provide an effective tool to control crop infection.展开更多
Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introd...Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.展开更多
This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power ...This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power uncertainty. To improve the economics of the real-time dispatch in regard to the current high operation cost of P2Gs, the wind power uncertainty set is divided into several segments, and a segmented linear decision rule is developed, which assigns adjustment tasks differently when wind power uncertainty falls into different segments. Thus, the P2G operation with high costs can be reduced in real-time adjustment. Besides, a novel segmented stochastic robust optimization is proposed to improve the efficiency and robustness of PGIS dispatch under wind power uncertainty, which minimizes the expected cost under the empirical wind power distribution and builds up the security constraints based on the robust optimization. The expected cost is formulated using a Nataf conversion-based multi-point estimate method, and the optimal number of estimate points is determined through sensitivity analysis. Furthermore, a difference-ofconvex optimization with a partial relaxation rule is developed to solve the non-convex dispatch problem in a sequential optimization framework. Numerical simulations in two testing cases validate the effectiveness of the proposed model and solving method.展开更多
In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching manageme...In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching management is constructed.In order to solve the problems of different timescales and difficult cooperation operation for related subsystems,a multi-bus distributed real-time network architecture based on hierarchical management of communication data is established,and simulation management software is developed to facilitate the free expansion of the simulation system.Meanwhile,the track line,train operation and other large timescale subsystems are realized by the pure digital simulation.And the time-sensitive subsystems,such as train traction system,braking system,auxiliary power supply system and network system etc.,are built by the semi-physical simulation.In this article,the system structure and the main implementation principle of each simulation subsystem are given in detail,and the system is tested and verified at the end.The results show that the simulation system can meet the expected requirements.展开更多
As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncert...As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncertainty in electrical load create great challenges to energy scheduling,especially for small-scale microgrids.Instead of deploying stochastic models to cope with such challenges,this paper presents a retroactive approach to real-time energy scheduling,which is prediction-independent and computationally efficient.Extensive case studies were conducted using 3-year-long real-life system data,and the results of simulations show that the cost difference between the proposed retroactive approach and perfect dispatch is less than 11%on average,which suggests better performance than model predictive control with the cost difference at 30%compared to the perfect dispatch.展开更多
This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adj...This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.展开更多
Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superi...Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.展开更多
文摘The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurised systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30% to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption. A balance between the improvement in water use and the potential increase in energy consumption is required. When surface water is used, pressurised irrigation systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation systems so their use should be carefully planned keeping in view adverse impact of carbon emissions on the environment and threat of increasing energy prices. With gravity-fed surface irrigation methods, the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimisation and gravity fed surface irrigation with real-time optimisation has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is equivalent to that given by pressurised systems. The real-time optimisation and control thus offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.
文摘In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.
基金supported by State Key Laboratory of HVDC under Grant SKLHVDC-2021-KF-09.
文摘The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.
基金supported by the Key Technology Program of China National Tobacco Corporation (110200902046)111 Project from the Education Ministry of China, (No.B07049)the National High-tech R&D Program of China (no. 2012AA101504)
文摘Tobacco mosaic virus(TMV) causes significant yield loss in susceptible crops irrigated with contaminated water. However, detection of TMV in water is difficult owing to extremely low concentrations of the virus. Here, we developed a simple method for the detection and quantification of TMV in irrigation water. TMV was reliably detected at concentrations as low as 10 viral copies/μL with real-time PCR. The sensitivity of detection was further improved using polyethylene glycol 6000(PEG6000, MW 6000) to concentrate TMV from water samples. Among the 28 samples from Shaanxi Province examined with our method, 17 were tested positive after virus concentration. Infectivity of TMV in the original water sample as well as after concentration was confirmed using PCR. The limiting concentration of TMV in water to re-infect plants was determined as 102 viral copies/mL. The method developed in this study offers a novel approach to detect TMV in irrigation water, and may provide an effective tool to control crop infection.
文摘Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.
基金supported by the National Natural Science Foundation of China (No. 51907025)Fundamental Research Funds for the Central Universities。
文摘This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power uncertainty. To improve the economics of the real-time dispatch in regard to the current high operation cost of P2Gs, the wind power uncertainty set is divided into several segments, and a segmented linear decision rule is developed, which assigns adjustment tasks differently when wind power uncertainty falls into different segments. Thus, the P2G operation with high costs can be reduced in real-time adjustment. Besides, a novel segmented stochastic robust optimization is proposed to improve the efficiency and robustness of PGIS dispatch under wind power uncertainty, which minimizes the expected cost under the empirical wind power distribution and builds up the security constraints based on the robust optimization. The expected cost is formulated using a Nataf conversion-based multi-point estimate method, and the optimal number of estimate points is determined through sensitivity analysis. Furthermore, a difference-ofconvex optimization with a partial relaxation rule is developed to solve the non-convex dispatch problem in a sequential optimization framework. Numerical simulations in two testing cases validate the effectiveness of the proposed model and solving method.
文摘In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching management is constructed.In order to solve the problems of different timescales and difficult cooperation operation for related subsystems,a multi-bus distributed real-time network architecture based on hierarchical management of communication data is established,and simulation management software is developed to facilitate the free expansion of the simulation system.Meanwhile,the track line,train operation and other large timescale subsystems are realized by the pure digital simulation.And the time-sensitive subsystems,such as train traction system,braking system,auxiliary power supply system and network system etc.,are built by the semi-physical simulation.In this article,the system structure and the main implementation principle of each simulation subsystem are given in detail,and the system is tested and verified at the end.The results show that the simulation system can meet the expected requirements.
基金partially supported by Hong Kong RGC Theme-based Research Scheme(No.T23-407/13N and No.T23-701/14N)SUSTech Faculty Startup Funding(No.Y01236135 and No.Y01236235).
文摘As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncertainty in electrical load create great challenges to energy scheduling,especially for small-scale microgrids.Instead of deploying stochastic models to cope with such challenges,this paper presents a retroactive approach to real-time energy scheduling,which is prediction-independent and computationally efficient.Extensive case studies were conducted using 3-year-long real-life system data,and the results of simulations show that the cost difference between the proposed retroactive approach and perfect dispatch is less than 11%on average,which suggests better performance than model predictive control with the cost difference at 30%compared to the perfect dispatch.
基金This work was supported by the National Natural Science Foundation of China(No.51761145106)the Guangdong Provincial Natural Science Foundation of China(No.2018B030306041)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019SJ01)the China Scholarship Council(No.201806155019).
文摘This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.
文摘Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.