A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environment...A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.展开更多
In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model...In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.展开更多
For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a sm...For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.展开更多
基金Project(20030533011)supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.
基金ItemSponsored by Provincial Natural Science Foundation of Hebei Province of China (E2004000206)
文摘In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.
基金This study was co-supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270,U2013206).
文摘For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.