期刊文献+
共找到14,991篇文章
< 1 2 250 >
每页显示 20 50 100
基于Real-time PCR法检测乳粉中牛源性成分定量研究
1
作者 陈晨 史国华 +5 位作者 陈勃旭 张瑞 王玉欣 贾文珅 陈佳 周巍 《粮油食品科技》 CAS CSCD 北大核心 2024年第2期159-164,共6页
基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛... 基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛源性成分的相对定量检测。结果显示,该方法的最低检测限为0.00001 mg/mL,回收率为91.11%~119.2%,组间变异系数≤0.58%、组内变异系数≤1.44%。说明该方法在特异性与稳定性上适用于乳粉中牛源性成分及含量的掺假检测。 展开更多
关键词 牛乳粉 马乳粉 real-time PCR 掺假检测
下载PDF
A multifunctional shear apparatus for rocks subjected to true triaxial stress and high temperature in real-time 被引量:1
2
作者 Jun Zhao Xia-Ting Feng +2 位作者 Jia-Rong Wang Liang Hu Yue Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3524-3543,共20页
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic... Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress. 展开更多
关键词 True-triaxial shear apparatus ROCKS Complete shear stress-deformation process CREEP real-time high-temperature
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
3
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
一种基于real-time PCR技术的TTV检测方法的建立及应用
4
作者 贾毅博 王高玉 +4 位作者 邓宛心 林彩云 杨华 陈运春 尹飞飞 《海南医学院学报》 CAS 北大核心 2024年第7期489-497,共9页
目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域... 目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域的real-time PCR检测方法,并与文献报道应用较为广泛的PCR检测方法进行了对比。结果:本研究建立的方法在1×10^(7)~1×10^(1) copies/μL标准品浓度范围内具有良好的线性关系,相关系数为1.000,斜率为-3.446,检测下限为1×10^(1) copies/μL。重复性试验结果显示,组内变异系数为7.22%,表明本方法重复性、稳定性较强。针对30份临床样本,使用本研究建立的real-time PCR检测方法及目前被多个研究所使用的4套引物进行对比。结果表明,本研究所建立的方法灵敏度显著高于文献中报道的4种方法(P<0.01);Sanger测序结果表明,本方法检测出的30份阳性样本均为TTV,检测特异性为100%。结论:本研究采用基于TaqMan探针的real-time PCR检测方法,检测灵敏性高、覆盖基因型范围广,尤其对于TTV病毒载量较低的情况下能够进行定量检测,对于TTV病毒的致病性及作为免疫标志物的应用提供重要的技术支持。 展开更多
关键词 Torque teno virus 基因组扩增测序 real-time PCR检测
下载PDF
A novel encoding mechanism for particle physics
5
作者 Zhi‑Guang Tan Sheng‑Jie Wang +2 位作者 You‑Neng Guo Hua Zheng Aldo Bonasera 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期153-166,共14页
This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to fac... This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool. 展开更多
关键词 Multi-quark state encoding mechanism Constituent quark Particle physics
下载PDF
A highly reliable encoding and decoding communication framework based on semantic information
6
作者 Yichi Zhang Haitao Zhao +4 位作者 Kuo Cao Li Zhou Zhe Wang Yueling Liu Jibo Wei 《Digital Communications and Networks》 SCIE CSCD 2024年第3期509-518,共10页
Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ... Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels. 展开更多
关键词 Semantic information Semantic encoding method Context-based decoding method
下载PDF
Real-time data processing method for CO_(2) dispersion interferometer on EAST
7
作者 张家敏 姚远 +6 位作者 刘郁阳 储宇奇 阮天翼 张耀 刘海庆 揭银先 凌必利 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期121-126,共6页
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to... A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation. 展开更多
关键词 dispersion interferometer real-time electron density FPGA EAST
下载PDF
Variational data encoding and correlations in quantum-enhanced machine learning
8
作者 Ming-Hao Wang Hua L¨u 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期298-306,共9页
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac... Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing. 展开更多
关键词 quantum machine learning variational data encoding quantum correlation
下载PDF
Real-Time Intelligent Diagnosis of Co-frequency Vibration Faults in Rotating Machinery Based on Lightweight-Convolutional Neural Networks
9
作者 Xin Pan Xiancheng Zhang +1 位作者 Zhinong Jiang Guangfu Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期264-282,共19页
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the... The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance. 展开更多
关键词 Co-frequency vibration real-time diagnosis LW-CNN Data augmentation
下载PDF
Integrated strategy for real-time wind power fluctuation mitigation and energy storage system control
10
作者 Yu Zhang Yongkang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CSCD 2024年第1期71-81,共11页
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys... To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system. 展开更多
关键词 SW-ICEEMDAN HESS real-time smoothing Rule-based multi-fuzzy control SoC
下载PDF
Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring:Pioneering point-of-care and beyond
11
作者 Moein Safarkhani Abdullah Aldhaher +5 位作者 Golnaz Heidari Ehsan Nazarzadeh Zare Majid Ebrahimi Warkiani Omid Akhavan YunSuk Huh Navid Rabiee 《Nano Materials Science》 EI CAS CSCD 2024年第3期263-283,共21页
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio... This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable. 展开更多
关键词 Glucose sensor BIOSENSOR Wearable devices NONINVASIVE real-time monitoring
下载PDF
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
12
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
A real-time performance improvement method for composite time scale
13
作者 Fangmin Wang Wenlin Li +4 位作者 Hongfei Dai Chunyi Li Jianhua Zhou Shenhui Xue Bo Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期350-357,共8页
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo... The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved. 展开更多
关键词 composite time scale real-time performance calculation interval adjustment stage
下载PDF
Real-time Assessment of Cytosolic, Mitochondrial, and Nuclear Calcium Levels Change in Rat Pheochromocytoma Cells during Pulsed Microwave Exposure Using a Genetically Encoded Calcium Indicator 被引量:3
14
作者 HU Shao Hua WANG Hui +5 位作者 LU Li ZHOU Hong Mei WANG Chang Zhen GAO Ya Bing DONG Ji PENG Rui Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第12期927-931,共5页
Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca^2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed m... Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca^2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed microwaves for 6 min at a specific absorption rate (SAR) of 4 W/kg to assess possible real-time effects. During microwave exposure, free calcium dynamics in the cytosol, mitochondria, and nucleus of cells were monitored by time-lapse microfluorimetry using a genetically encoded calcium indicator (ratiometric-pericam, ratiometric-10ericam-mt, 展开更多
关键词 real-time Assessment of Cytosolic MITOCHONDRIAL Nuclear Calcium Levels
下载PDF
Models to Simulate Effective Coverage of Fire Station Based on Real-Time Travel Times
15
作者 Sicheng Zhu Dingli Liu +2 位作者 Weijun Liu Ying Li Tian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期483-513,共31页
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev... In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations. 展开更多
关键词 Fire services fire station effective coverage real-time traffic SIMULATION
下载PDF
FPGA implementation of 500-MHz high-count-rate high-time-resolution real-time digital neutron-gamma discrimination for fast liquid detectors
16
作者 Hui‑Yin Shen Jing‑Long Zhang +1 位作者 Jie Zhang Jian‑Hang Zhou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期101-113,共13页
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel... Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV. 展开更多
关键词 Neutron-gamma discrimination Liquid scintillation detector real-time spectrum analyzer
下载PDF
Exploration of instantaneous frequency for local control assessment in real-time hybrid simulation
17
作者 Xu Weijie Peng Changle +1 位作者 Guo Tong Chen Cheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期995-1008,共14页
Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing... Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy. 展开更多
关键词 real-time hybrid simulation tracking assessment instantaneous frequency Hilbert transform
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
18
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
Real-Time Tunable Gas Sensing Platform Based on SnO_(2) Nanoparticles Activated by Blue Micro-Light-Emitting Diodes
19
作者 Gi Baek Nam Jung-El Ryu +25 位作者 Tae Hoon Eom Seung Ju Kim Jun Min Suh Seungmin Lee Sungkyun Choi Cheon Woo Moon Seon Ju Park Soo Min Lee Byungsoo Kim Sung Hyuk Park Jin Wook Yang Sangjin Min Sohyeon Park Sung Hwan Cho Hyuk Jin Kim Sang Eon Jun Tae Hyung Lee Yeong Jae Kim Jae Young Kim Young Joon Hong Jong-In Shim Hyung-Gi Byun Yongjo Park Inkyu Park Sang-Wan Ryu Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期103-119,共17页
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes... Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies. 展开更多
关键词 Micro-LED Gas sensor array Low power consumption Metal decoration real-time detection
下载PDF
A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty
20
作者 Zhiwei Zhu Minglei Yang +3 位作者 Wangli He Renchu He Yunmeng Zhao Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期183-192,共10页
The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization i... The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice. 展开更多
关键词 Deep reinforcement learning Gasoline blending real-time optimization PETROLEUM Computer simulation Neural networks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部