Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m...Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.展开更多
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the...Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.展开更多
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric...Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.展开更多
Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of c...Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.展开更多
This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines ...This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.展开更多
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con...This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.展开更多
The primary purpose of the Energy Management Scheme(EMS)is to monitor the energy fluctuations present in the load profile.In this paper,the improved model predictive controller is adopted for the EMS in the power syst...The primary purpose of the Energy Management Scheme(EMS)is to monitor the energy fluctuations present in the load profile.In this paper,the improved model predictive controller is adopted for the EMS in the power system.Emperor Penguin Optimization(EPO)algorithm optimized Artificial Neural Network(ANN)with Model Predictive Control(MPC)scheme for accurate prediction of load and power forecasting at the time of preoptimizing EMS is presented.For the power generation,Renewable Energy Sources(RES)such as photo voltaic(PV)and wind turbine(WT)are utilized along with that the fuel cell is also presented in case of failure by the RES.Such a setup is connected with the grid and applies to the household appliances.In improved model predictive control(IMPC),the set of constraints for the powerflow in the system is optimized by the ANN,which is trained by EPO.Such a tuning based prediction model is presented in the IMPC technique.The proposed work is implemented in the MATLAB/Simulink platform.The energy management capability of the proposed system is analyzed for different atmospheric conditions.The total system cost,life cycle cost and annualized cost for IMPC are 48%,45%and 15%,respectively.From the performance analysis,the cost obtained by the proposed method is very low compared to that obtained by the existing techniques.展开更多
Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transf...Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transform the chemical energy in hydrogen-rich compounds into electrical energy.The main drawback of the standalone FC is its slow dynamic response and its inability to supply rapid variations in the load demand.Therefore,adding energy storage systems is necessary.However,to manage and distribute the power-sharing among the hybrid proton exchange membrane(PEM)fuel cell(FC),battery storage(BS),and supercapacitor(SC),an energy management strategy(EMS)is essential.In this research work,an optimal EMS based on a spotted hyena optimizer(SHO)for hybrid PEM fuel cell/BS/SC is proposed.The main goal of an EMS is to improve the performance of hybrid FC/BS/SC and to reduce the amount of hydrogen consumption.To prove the superiority of the SHO method,the obtained results are compared with the chimp optimizer(CO),the artificial ecosystem-based optimizer(AEO),the seagull optimization algorithm(SOA),the sooty tern optimization algorithm(STOA),and the coyote optimization algorithm(COA).Two main metrics are used as a benchmark for the comparison:the minimum consumed hydrogen and the efficiency of the system.The main findings confirm that the minimum amount of hydrogen consumption and maximum efficiency are achieved by the proposed SHO based EMS.展开更多
In this increasingly growing population especially in the developing countries, it is almost impossible to solve the energy crisis. This has led to the extreme growth of the back up power generation industry such as D...In this increasingly growing population especially in the developing countries, it is almost impossible to solve the energy crisis. This has led to the extreme growth of the back up power generation industry such as Diesel generators and home invertors. From the last couple of years the solar PV technology has started to penetrate in these geographies. This paper discusses on the supply side management of the electricity sources available to a consumer to manage his outage and also the over all cost optimization, as the cost of energy from every source is different and it also depends on the load curve, last but not the least also as to what time of the day what source or combination of sources have been used.展开更多
A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a c...A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.展开更多
The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the...The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the difficulty of congestion management of power systems in cross-border electricity market among different regions. For handling this, the Real-Time Market is proposed for balancing capacity trading against congestions. Several strategies for Real-Time Market dealing with congestions are proposed. The strategy of two-stage crossborder markets in Day-ahead, Intra-day and Real Time Market are introduced with the congestion constraints complied. Pre-Contingency strategy is proposed as the advance preparation for the future congestion, and In-Day redispatch is used for regulation. Accordingly, the requirements on facilities considering telemetry and remote control in a fast manner are discussed at last.展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind...This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom ma...Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom malfunctioning,and easy to install.PV energy productivity significantly contributes to smart grids through many small PV mechanisms.Precise solar radiation(SR)prediction could substantially reduce the impact and cost relating to the advancement of solar energy.In recent times,several SR predictive mechanism was formulated,namely artificial neural network(ANN),autoregressive moving average,and support vector machine(SVM).Therefore,this article develops an optimal Modified Bidirectional Gated Recurrent Unit Driven Solar Radiation Prediction(OMBGRU-SRP)for energy management.The presented OMBGRU-SRP technique mainly aims to accomplish an accurate and time SR prediction process.To accomplish this,the presented OMBGRU-SRP technique performs data preprocessing to normalize the solar data.Next,the MBGRU model is derived using BGRU with an attention mechanism and skip connections.At last,the hyperparameter tuning of the MBGRU model is carried out using the satin bowerbird optimization(SBO)algorithm to attain maximum prediction with minimum error values.The SBO algorithm is an intelligent optimization algorithm that simulates the breeding behavior of an adult male Satin Bowerbird in the wild.Many experiments were conducted to demonstrate the enhanced SR prediction performance.The experimental values highlighted the supremacy of the OMBGRU-SRP algorithm over other existing models.展开更多
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ...A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.展开更多
基金supported in part by the National Natural Science Foundation of China under grants 61971080,61901367in part by the Natural Science Foundation of Shaanxi Province under grant 2020JQ-844in part by the open-end fund of the Engineering Research Center of Intelligent Air-ground Integrated Vehicle and Traffic Control(ZNKD2021-001)。
文摘Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability.
基金support by Ministry of Housing and Urban-Rural Development’s Science and Technology Plan Project 2022(Hubei Province).
文摘Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(W22KJ2722005)“Research on Optimal Configuration and Operation Strategy of Energy Storage under“New Energy+Energy Storage”Mode”.
文摘Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.
基金supported by National Natural Science Foundation of China(Grant No. 51075410)
文摘Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
文摘This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research under Grant LSE-ENIT-LR 11ES15funded in part by the PAQ-Collabora(PAR&I-Tk)program。
文摘This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.
文摘The primary purpose of the Energy Management Scheme(EMS)is to monitor the energy fluctuations present in the load profile.In this paper,the improved model predictive controller is adopted for the EMS in the power system.Emperor Penguin Optimization(EPO)algorithm optimized Artificial Neural Network(ANN)with Model Predictive Control(MPC)scheme for accurate prediction of load and power forecasting at the time of preoptimizing EMS is presented.For the power generation,Renewable Energy Sources(RES)such as photo voltaic(PV)and wind turbine(WT)are utilized along with that the fuel cell is also presented in case of failure by the RES.Such a setup is connected with the grid and applies to the household appliances.In improved model predictive control(IMPC),the set of constraints for the powerflow in the system is optimized by the ANN,which is trained by EPO.Such a tuning based prediction model is presented in the IMPC technique.The proposed work is implemented in the MATLAB/Simulink platform.The energy management capability of the proposed system is analyzed for different atmospheric conditions.The total system cost,life cycle cost and annualized cost for IMPC are 48%,45%and 15%,respectively.From the performance analysis,the cost obtained by the proposed method is very low compared to that obtained by the existing techniques.
基金supported by National Natural Science Foundation of China(61433004,61603085)the China Postdoctoral Science Foundation(2015M570253)the Fundamental Research Funds for the Central Universities(N150403004)
基金supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No.2020/01/11742.
文摘Hydrocarbons,carbon monoxide and other pollutants from the transportation sector harm human health in many ways.Fuel cell(FC)has been evolving rapidly over the past two decades due to its efficient mechanism to transform the chemical energy in hydrogen-rich compounds into electrical energy.The main drawback of the standalone FC is its slow dynamic response and its inability to supply rapid variations in the load demand.Therefore,adding energy storage systems is necessary.However,to manage and distribute the power-sharing among the hybrid proton exchange membrane(PEM)fuel cell(FC),battery storage(BS),and supercapacitor(SC),an energy management strategy(EMS)is essential.In this research work,an optimal EMS based on a spotted hyena optimizer(SHO)for hybrid PEM fuel cell/BS/SC is proposed.The main goal of an EMS is to improve the performance of hybrid FC/BS/SC and to reduce the amount of hydrogen consumption.To prove the superiority of the SHO method,the obtained results are compared with the chimp optimizer(CO),the artificial ecosystem-based optimizer(AEO),the seagull optimization algorithm(SOA),the sooty tern optimization algorithm(STOA),and the coyote optimization algorithm(COA).Two main metrics are used as a benchmark for the comparison:the minimum consumed hydrogen and the efficiency of the system.The main findings confirm that the minimum amount of hydrogen consumption and maximum efficiency are achieved by the proposed SHO based EMS.
文摘In this increasingly growing population especially in the developing countries, it is almost impossible to solve the energy crisis. This has led to the extreme growth of the back up power generation industry such as Diesel generators and home invertors. From the last couple of years the solar PV technology has started to penetrate in these geographies. This paper discusses on the supply side management of the electricity sources available to a consumer to manage his outage and also the over all cost optimization, as the cost of energy from every source is different and it also depends on the load curve, last but not the least also as to what time of the day what source or combination of sources have been used.
文摘A microgrid(MG)refers to a set of loads,generation resources and energy storage systems acting as a controllable load or a generator to supply power and heating to a local area.The MG-generated power management is a central topic for MG design and operation.The existence of dispersed generation(DG)resources has faced MG management with new issues.Depending on the level of exchanges between an MG and the main grid,the MG operation states can be divided into independent or grid-connected ones.Energy management in MGs aims to supply power at the lowest cost for optimal load response.This study examines MG energy management in two operational modes of islanded and grid-connected,and proposes a structure with two control layers(primary and secondary)for energy management.At the principal level of control,the energy management system is determined individually for all MG by taking into consideration the probability constraints and RES uncertainty by the Weibull the probability density function(PDF),generation resources’power as well as the generation surplus and deficit of each MG.Then,the information of the power surplus and deficit of each MG must be sent to the central energy management system.To confirm the proposed structure,a case system with two MGs and a condensive load is simulated by using a multi-time harmony search algorithm.Several scenarios are applied to evaluate the performance of this algorithm.The findings clearly show the effectiveness of the proposed system in the energy management of several MGs,leading to the optimal performance of the resources per MG.Moreover,the proposed control scheme properly controls the MG and grid’s performance in their interactions and offers a high level of robustness,stable behavior under different conditions and high quality of power supply.
文摘The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the difficulty of congestion management of power systems in cross-border electricity market among different regions. For handling this, the Real-Time Market is proposed for balancing capacity trading against congestions. Several strategies for Real-Time Market dealing with congestions are proposed. The strategy of two-stage crossborder markets in Day-ahead, Intra-day and Real Time Market are introduced with the congestion constraints complied. Pre-Contingency strategy is proposed as the advance preparation for the future congestion, and In-Day redispatch is used for regulation. Accordingly, the requirements on facilities considering telemetry and remote control in a fast manner are discussed at last.
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
基金supported by European Regional Development Fund in the "Apulian Technology Clusters SMARTPUGLIA 2020"Program
文摘This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
文摘Solar energy will be a great alternative to fossil fuels since it is clean and renewable.The photovoltaic(PV)mechanism produces sunbeams’green energy without noise or pollution.The PV mechanism seems simple,seldom malfunctioning,and easy to install.PV energy productivity significantly contributes to smart grids through many small PV mechanisms.Precise solar radiation(SR)prediction could substantially reduce the impact and cost relating to the advancement of solar energy.In recent times,several SR predictive mechanism was formulated,namely artificial neural network(ANN),autoregressive moving average,and support vector machine(SVM).Therefore,this article develops an optimal Modified Bidirectional Gated Recurrent Unit Driven Solar Radiation Prediction(OMBGRU-SRP)for energy management.The presented OMBGRU-SRP technique mainly aims to accomplish an accurate and time SR prediction process.To accomplish this,the presented OMBGRU-SRP technique performs data preprocessing to normalize the solar data.Next,the MBGRU model is derived using BGRU with an attention mechanism and skip connections.At last,the hyperparameter tuning of the MBGRU model is carried out using the satin bowerbird optimization(SBO)algorithm to attain maximum prediction with minimum error values.The SBO algorithm is an intelligent optimization algorithm that simulates the breeding behavior of an adult male Satin Bowerbird in the wild.Many experiments were conducted to demonstrate the enhanced SR prediction performance.The experimental values highlighted the supremacy of the OMBGRU-SRP algorithm over other existing models.
基金Shanghai Municipal Science and Technology Commission, China (No. 033012017).
文摘A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)