Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computati...Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.展开更多
Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visu...Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
For permanent magnet synchronous machine(PMSM),the machine model is critical to predict the operating states for motor control,which,however,can be greatly affected by system nonlinearities.Hence,this paper investigat...For permanent magnet synchronous machine(PMSM),the machine model is critical to predict the operating states for motor control,which,however,can be greatly affected by system nonlinearities.Hence,this paper investigates accurate machine modeling for control and parameter estimation.In the proposed approach,the PMSM model with saturated inductances is used as the base model,and this paper investigates modeling and compensation of the offsets to the base model due to system nonlinearities such as saturation and core loss effects for accurate machine modeling and voltage prediction.Specifically,the offsets to the base model are modeled using nonlinear functions with variable coefficients to compensate saturation and core loss effect,which can achieve better accuracy without changing the model structure.A differential estimation model is derived to estimate the model coefficients from a small amount of measurements with simplified procedure.Moreover,the model offset calculation is both computation and memory efficient with simplified implementation.The contribution is to improve the machine model accuracy and achieve precise voltage prediction for practical applications.Experiments,comparisons and the application to temperature estimation are conducted on a test interior PMSM to validate the proposed approach.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates...Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.展开更多
Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phas...Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This pa...In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.展开更多
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A...In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood e...In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenanc...As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.展开更多
基金Supported by the National Natural Science Foundation of China(21136003,21176089)the National Science&Technology Support Plan(2012BAK13B02)+2 种基金the National Major Basic Research Program(2014CB744306)the Natural Science Foundation Team Project of Guangdong Province(S2011030001366)the Fundamental Research Funds for Central Universities(2013ZP0010)
文摘Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.
文摘Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金supported by in part by the National Natural Science Foundation of China(52105079,62103455)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP241)。
文摘For permanent magnet synchronous machine(PMSM),the machine model is critical to predict the operating states for motor control,which,however,can be greatly affected by system nonlinearities.Hence,this paper investigates accurate machine modeling for control and parameter estimation.In the proposed approach,the PMSM model with saturated inductances is used as the base model,and this paper investigates modeling and compensation of the offsets to the base model due to system nonlinearities such as saturation and core loss effects for accurate machine modeling and voltage prediction.Specifically,the offsets to the base model are modeled using nonlinear functions with variable coefficients to compensate saturation and core loss effect,which can achieve better accuracy without changing the model structure.A differential estimation model is derived to estimate the model coefficients from a small amount of measurements with simplified procedure.Moreover,the model offset calculation is both computation and memory efficient with simplified implementation.The contribution is to improve the machine model accuracy and achieve precise voltage prediction for practical applications.Experiments,comparisons and the application to temperature estimation are conducted on a test interior PMSM to validate the proposed approach.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
文摘Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.
基金supported in part by the National Natural Science Founda⁃tion of China(NSFC)under Grant Nos.62301148,62341107,and 62261160576by the Natural Science Foundation of Jiangsu Prov⁃ince under Grant No.BK20230824in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Indus⁃try)under Grant Nos.BE2023022 and BE2023022-1.
文摘Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
基金Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.1105007002National Natural Science Foundation of China under Grant No.51378107 and No.51678147
文摘In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.
基金supported by the National Natural Science Foundation of China(91538201)
文摘In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
基金The National Natural Science Foundation of China(No.11171065)the Natural Science Foundation of Jiangsu Province(No.BK2011058)
文摘In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
基金Project(61174115)supported by the National Natural Science Foundation of ChinaProject(L2013001)supported by Scientific Research Program of Liaoning Provincial Education Department,China
文摘As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.