期刊文献+
共找到8,860篇文章
< 1 2 250 >
每页显示 20 50 100
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
1
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
2
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
3
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
A YOLOv8-CE-based real-time traffic sign detection and identification method for autonomous vehicles
4
作者 Yuechen Luo Yusheng Ci +1 位作者 Hexin Zhang Lina Wu 《Digital Transportation and Safety》 2024年第3期82-91,共10页
Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL... Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B. 展开更多
关键词 YOLOv8-CE-based real-time Traffic SIGNS detection
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
5
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
6
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
下载PDF
Optimizing Bearing Fault Detection:CNN-LSTM with Attentive TabNet for Electric Motor Systems
7
作者 Alaa U.Khawaja Ahmad Shaf +4 位作者 Faisal Al Thobiani Tariq Ali Muhammad Irfan Aqib Rehman Pirzada Unza Shahkeel 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2399-2420,共22页
Electric motor-driven systems are core components across industries,yet they’re susceptible to bearing faults.Manual fault diagnosis poses safety risks and economic instability,necessitating an automated approach.Thi... Electric motor-driven systems are core components across industries,yet they’re susceptible to bearing faults.Manual fault diagnosis poses safety risks and economic instability,necessitating an automated approach.This study proposes FTCNNLSTM(Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory),an algorithm combining Convolutional Neural Networks,Long Short-Term Memory Networks,and Attentive Interpretable Tabular Learning.The model preprocesses the CWRU(Case Western Reserve University)bearing dataset using segmentation,normalization,feature scaling,and label encoding.Its architecture comprises multiple 1D Convolutional layers,batch normalization,max-pooling,and LSTM blocks with dropout,followed by batch normalization,dense layers,and appropriate activation and loss functions.Fine-tuning techniques prevent over-fitting.Evaluations were conducted on 10 fault classes from the CWRU dataset.FTCNNLSTM was benchmarked against four approaches:CNN,LSTM,CNN-LSTM with random forest,and CNN-LSTM with gradient boosting,all using 460 instances.The FTCNNLSTM model,augmented with TabNet,achieved 96%accuracy,outperforming other methods.This establishes it as a reliable and effective approach for automating bearing fault detection in electric motor-driven systems. 展开更多
关键词 Electric motor-driven systems bearing faults AUTOMATION fine tunned convolutional neural network long short-term memory fault detection
下载PDF
Infrared Fault Detection Method for Dense Electrolytic Bath Polar Plate Based on YOLOv5s
8
作者 Huiling Yu Yanqiu Hang +2 位作者 Shen Shi Kangning Wu Yizhuo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4859-4874,共16页
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr... Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste. 展开更多
关键词 Infrared polar plate fault detection YOLOv5 Real-ESRGAN Marr boundary detection operator Focal-EIoU loss
下载PDF
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
9
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
10
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
11
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 fault detection vehicle battery system lithium batteries fault samples
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
12
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Generalized autoencoder-based fault detection method for traction systems with performance degradation
13
作者 Chao Cheng Wenyu Liu +1 位作者 Lu Di Shenquan Wang 《High-Speed Railway》 2024年第3期180-186,共7页
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ... Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods. 展开更多
关键词 Performance degradation Generalized autoencoder fault detection Traction control systems High-speed trains
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
14
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault detection Deep Learning Image Processing
下载PDF
Online Fault Monitoring of On-Load Tap-Changer Based on Voiceprint Detection
15
作者 Kitwa Henock Bondo 《Journal of Power and Energy Engineering》 2024年第3期48-59,共12页
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj... The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies. 展开更多
关键词 Online fault Monitoring OLTC On-Load Tap Change Voiceprint detection
下载PDF
LDA-ID:An LDA-Based Framework for Real-Time Network Intrusion Detection 被引量:1
16
作者 Weidong Zhou Shengwei Lei +1 位作者 Chunhe Xia Tianbo Wang 《China Communications》 SCIE CSCD 2023年第12期166-181,共16页
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ... Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others. 展开更多
关键词 feature overlap LDA-ID optimal topic number determination real-time intrusion detection
下载PDF
Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
17
作者 Arsal Javaid Areeb Abbas +4 位作者 Jehangir Arshad Mohammad Khalid Imam Rahmani Sohaib Tahir Chauhdary Mujtaba Hussain Jaffery Abdulbasid S.Banga 《Computers, Materials & Continua》 SCIE EI 2023年第11期1795-1814,共20页
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta... To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture. 展开更多
关键词 Posture detection FSR sensor machine learning real-time KNN
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
18
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Portable FBAR based E-nose for cold chain real-time bananas shelf time detection
19
作者 Chen Wu Jiuyan Li 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期32-39,共8页
Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and... Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage. 展开更多
关键词 Film bulk acoustic resonator(FBAR) Portable E-nose real-time detection Layer by layer
下载PDF
Real-time fault detection method based on belief rule base for aircraft navigation system 被引量:14
20
作者 Zhao Xin Wang Shicheng +2 位作者 Zhang Jinsheng Fan Zhiliang Min Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期717-729,共13页
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ... Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement. 展开更多
关键词 Belief rule base fault detection fault tolerant control Integrated navigation Parameter recursive estimation algorithm
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部