期刊文献+
共找到5,071篇文章
< 1 2 250 >
每页显示 20 50 100
Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring:Pioneering point-of-care and beyond
1
作者 Moein Safarkhani Abdullah Aldhaher +5 位作者 Golnaz Heidari Ehsan Nazarzadeh Zare Majid Ebrahimi Warkiani Omid Akhavan YunSuk Huh Navid Rabiee 《Nano Materials Science》 EI CAS CSCD 2024年第3期263-283,共21页
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio... This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable. 展开更多
关键词 Glucose sensor BIOSENSOR Wearable devices NONINVASIVE real-time monitoring
下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
2
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
下载PDF
Real-Time Monitoring of Meteorological Data at In-Situ GCW Remediation Sites
3
作者 Qinghai Wu Xiaofeng Yang +2 位作者 Jun Liu Ruiqi Wang Quanyou Fu 《Journal of Geoscience and Environment Protection》 2024年第9期152-166,共15页
To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation w... To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system. 展开更多
关键词 Groundwater Circulation Well Weather Station real-time monitoring Embedded Web Server
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:2
4
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning monitoring real-time prediction Data analysis
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
5
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of health Things(IoHT)
下载PDF
Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration
6
作者 Hamed Taherdoost 《Computers, Materials & Continua》 SCIE EI 2024年第10期79-104,共26页
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ... Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes. 展开更多
关键词 Wearable healthcare IoT integration patient care remote patient monitoring real-time data transmission health technology
下载PDF
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
7
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
8
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring
9
作者 Yidong Peng Jiancheng Dong +8 位作者 Jiayan Long Yuxi Zhang Xinwei Tang Xi Lin Haoran Liu Tuoqi Liu Wei Fan Tianxi Liu Yunpeng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期149-162,共14页
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,... Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation. 展开更多
关键词 Skin electronics Thermal regulating textiles Electromagnetic interference shielding Ultraviolet proof health monitoring
下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions
10
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
下载PDF
Building the Capacity of Health Professionals in Monitoring and Evaluation in a Public Health Institution: Experience of the National Institute of Public Health (NIPH) of Côte d’Ivoire
11
作者 Esme Marie Laure Essis N’guetta Mathilde Manouan +9 位作者 Anna-Corine Estell Liema Bissouma Ethmonia Kouamé Ekissi Orsot Tetchi Sagou Olivier Yayo Stephane Claon Yao Eugene Konan William Yavo Agbaya Stephane Oga Tenenan Jean Marie Yeo Joseph Aka 《Health》 2024年第8期731-749,共19页
Background: In the context of the fight against HIV, a lack of skills in monitoring and evaluating the personnel in charge of activities has been identified at the national level. It was the subject of a priority axis... Background: In the context of the fight against HIV, a lack of skills in monitoring and evaluating the personnel in charge of activities has been identified at the national level. It was the subject of a priority axis of the national plan for monitoring and evaluating the fight against HIV (2006-2010) that was aimed at strengthening the capacities of actors in this area. To increase the critical mass of competent human resources in the short term, the National Institute of Public Health (NIPH) of Côte d’Ivoire organized monitoring and evaluation training sessions for healthcare professionals from 2011 to 2016. Methods: A single case study with multiple levels of analysis was carried out, combining a qualitative survey and a literature review. An evaluation was carried out six months after each training session. In addition, the results of the pre- and post-tests and of the daily and final evaluations that accompanied the various training sessions were used to provide further information. The qualitative data collected were analyzed using INVIVO 15 software. Results: Some 89 health professionals (69% men and 31% women) working at the national level (51% at the central level, including 58% in health programs) and in development partner agencies (37%) participated in this capacity building program. Most participants were senior health managers (56%), data managers (23%), and statisticians and computer scientists (10%). Almost all the trainings were financed by 16 technical and financial partners (85%), mainly the MEASURE Evaluation project (27%). Conclusion: M&E training, despite all its imperfections, has made it possible to identify M&E training needs at the national level and to increase the critical mass of national skills and to have some culture in M&E. 展开更多
关键词 Short-Term Training Capacity Building monitoring and Evaluation health Professional AFRICA Côte d’Ivoire
下载PDF
Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages
12
作者 Giada Faraco Andrea Vincenzo De Nunzio +1 位作者 Nicola Ivan Giannoccaro Arcangelo Messina 《Structural Durability & Health Monitoring》 EI 2024年第6期739-762,共24页
The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a g... The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure. 展开更多
关键词 Structural health monitoring damage detection vibration measurements stochastic subspace identification
下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
13
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural health monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element Method(FEM)
下载PDF
Personalized Health Monitoring Systems: Integrating Wearable and AI
14
作者 Ion-Alexandru Secara Dariia Hordiiuk 《Journal of Intelligent Learning Systems and Applications》 2024年第2期44-52,共9页
The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearabl... The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems. 展开更多
关键词 Wearables AI Personalized healthcare health monitoring Systems
下载PDF
Review and Prospect of Research on Structural Health Monitoring Technology for Bridges
15
作者 Guoyi Liu 《Journal of Architectural Research and Development》 2024年第3期156-161,共6页
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a... As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges. 展开更多
关键词 Bridge structural health monitoring Safe operation monitoring technology
下载PDF
Statistical Models for Condition Monitoring and State of Health Estimation of Lithium-Ion Batteries for Ships
16
作者 Erik Vanem Qin Liang +4 位作者 Maximilian Bruch Gjermund Bøthun Katrine Bruvik Kristian Thorbjørnsen Azzeddine Bakdi 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期11-20,共10页
Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is i... Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies. 展开更多
关键词 BATTERY condition monitoring data-driven analytics DIAGNOSTICS state of health
下载PDF
Discussion on Structural Health Monitoring of Urban Underground Road Tunnel
17
作者 Yike Wei 《Journal of World Architecture》 2024年第5期18-23,共6页
The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground ... The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground road tunnel projects,insufficient investment often leads to less frequent application of health monitoring systems.The application of intelligent structural health monitoring means can not only reduce the project cost but also help workers fully understand the actual situation of the tunnel structure.Therefore,this paper analyzes the characteristics,problems,and design of the urban underground road tunnel structural health monitoring system,and discusses the implementation of the urban underground road tunnel structural health monitoring system. 展开更多
关键词 Urban underground road Tunnel structure health monitoring
下载PDF
Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring:A minireview 被引量:7
18
作者 Yongchao Tang Xuejin Li +3 位作者 Haiming Lv Wenlong Wang Chunyi Zhi Hongfei Li 《InfoMat》 SCIE CAS 2020年第6期1109-1130,共22页
Wearable sensing systems,as a spearhead of artificial intelligence,are playing increasingly important roles in many fields especially health monitoring.In order to achieve a better wearable experience,rationally integ... Wearable sensing systems,as a spearhead of artificial intelligence,are playing increasingly important roles in many fields especially health monitoring.In order to achieve a better wearable experience,rationally integrating the two key components of sensing systems,that is,power supplies and sensors,has become a desperate requirement.However,limited by device designs and fabrication technologies,the current integrated sensing systems still face many great challenges,such as safety,miniaturization,mechanical stability,energyefficiency,sustainability,and comfortability.In this review,the key challenges and opportunities in the current development of integrated wearable sensing systems are summarized.By summarizing the typical configurations of diverse wearable power supplies,and recent advances concerning the integrated sensing systems driven by such power supplies,the representative integrated designs,and micro/nanofabrication technologies are highlighted.Lastly,some new directions and potential solutions aiming at the device-level integration designs are outlooked. 展开更多
关键词 energy storage devices flexible energy supplies health monitoring integrated sensing systems wearable sensors
原文传递
Sensor placement of long-term health monitoring for large bridges based on the real-time correction of finite element model
19
作者 陈悦 ZHOU Jian-ting SHEN Pei-wen 《Journal of Chongqing University》 CAS 2013年第3期123-130,共8页
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result... The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge. 展开更多
关键词 large bridges health monitoring real-time correction optimal sensor placement
下载PDF
Patient Centered Real-Time Mobile Health Monitoring System
20
作者 Won-Jae Yi Jafar Saniie 《E-Health Telecommunication Systems and Networks》 2016年第4期75-94,共20页
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ... In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection. 展开更多
关键词 Patient Remote health monitoring real-time Sensor Data Processing Wireless Body Sensor Network Fall Detection Heart monitoring
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部