期刊文献+
共找到8,399篇文章
< 1 2 250 >
每页显示 20 50 100
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
1
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush 被引量:4
2
作者 Xin Wang Zhimin Xu +3 位作者 Yajun Sun Jieming Zheng Chenghang Zhang Zhongwen Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期853-866,共14页
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D... As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%. 展开更多
关键词 Mine water inrush Automatic monitoring real-time warning Recognition model
下载PDF
A Novel On-Site-Real-Time Method for Identifying Characteristic Parameters Using Ultrasonic Echo Groups and Neural Network 被引量:1
3
作者 Shuyong Duan Jialin Zhang +2 位作者 Heng Ouyang Xu Han Guirong Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期215-228,共14页
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness... On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment. 展开更多
关键词 Parameter identification Ultrasonic echo group High-precision modeling Artificial neural network NDT
下载PDF
Dynamics Modeling and Parameter Identification for a Coupled-Drive Dual-Arm Nursing Robot
4
作者 Hao Lu Zhiqiang Yang +2 位作者 Deliang Zhu Fei Deng Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期243-257,共15页
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well... A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots. 展开更多
关键词 Nursing-care robot Coupled-drive joint Dynamic modeling Parameter identification
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
5
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating
6
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
下载PDF
Millet Origin Identification Model Based on Near-infrared Spectroscopy
7
作者 Penghe LYU Dongfeng YANG 《Agricultural Biotechnology》 2024年第3期31-33,共3页
[Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for... [Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for NIRS analysis,and an origin identification model based on BP neural network was established.The competitive adaptive reweighted sampling(CARS)algorithm was used to extract characteristic wavelength variables,and a CARS-BP model was established on this basis.Finally,the CARS-BP model was compared with support vector machine(SVM),partial least squares discriminant analysis(PLS)and KNN models.[Results]The characteristic wavelengths were extracted by CARS,and the number of variables was reduced from 1845 to 130.The discrimination accuracy of the CARS-BP model for the samples from six producing areas reached 98.1%,which was better than SVM,PSL and KNN models.[Conclusions]NIRS can quickly and accurately identify the origin of millet,providing a new method and way for the origin identification and quality evaluation of millet. 展开更多
关键词 MILLET identification of origin CARS-BP model NIR
下载PDF
Identification and Quantitation of Cashmere (Pashmina) Fiber and Wool Using Novel Microchip Based Real-Time PCR Technology 被引量:4
8
作者 Rajwant Gill Sikander Gill +1 位作者 Maxim Slyadnev Alexander Stroganov 《Journal of Textile Science and Technology》 2018年第4期141-150,共10页
The textile industrial chain all over the world is facing a challenge of differentiating cashmere fiber from mixture of wool and other fibers in case cashmere stocks are adulterated with wool or other fibers. For iden... The textile industrial chain all over the world is facing a challenge of differentiating cashmere fiber from mixture of wool and other fibers in case cashmere stocks are adulterated with wool or other fibers. For identification of cashmere in such mixtures, the development of microchip based real-time PCR technology offers a very sensitive, specific, and accurate solution. The technology has been validated with cashmere and wool samples procured from distant farms, and from cashmere goats and sheep of different age and sex. Model samples with incremental raw cashmere or wool content were tested. The experimentally determined content was found to be comparable to the weighed content of the respective fibers in the samples. This technology may prove a cost cutter since it needs only 1.2 μl of the PCR reagent mix. It is substantially faster than traditional real-time PCR systems for being carried as miniature reaction volume in metal microchip. These features allow faster thermal equilibrium and thermal uniformity over the entire array of microreactors. For routine tests or in commercial set up, the microchips are available as ready-to-run with lyophilized reagents in its microreactors to which only 1 μl of the 10-fold diluted isolated DNA sample is added. The lyophilized microchips offer user-friendly handling in testing laboratories and help minimize human error. 展开更多
关键词 MICROCHIP real-time PCR identification QUANTITATION CASHMERE WOOL
下载PDF
Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing 被引量:1
9
作者 YUAN Bin ZHAO Mingze +2 位作者 MENG Siwei ZHANG Wei ZHENG He 《Petroleum Exploration and Development》 SCIE 2023年第6期1487-1496,共10页
The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algori... The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algorithm, together with the analysis on data and information of horizontal well fracturing in shale gas reservoirs, this paper presents a method for intelligent identification and real-time warning of diverse complex events in horizontal well fracturing. An identification model for "point" events in fracturing is established based on the Att-BiLSTM neural network, along with the broad learning system (BLS) and the BP neural network, and it realizes the intelligent identification of the start/end of fracturing, formation breakdown, instantaneous shut-in, and other events, with an accuracy of over 97%. An identification model for "phase" events in fracturing is established based on enhanced Unet++ network, and it realizes the intelligent identification of pump ball, pre-acid treatment, temporary plugging fracturing, sand plugging, and other events, with an error of less than 0.002. Moreover, a real-time prediction model for fracturing pressure is built based on the Att-BiLSTM neural network, and it realizes the real-time warning of diverse events in fracturing. The proposed method can provide an intelligent, efficient and accurate identification of events in fracturing to support the decision-making. 展开更多
关键词 horizontal well fracturing fracturing events intelligent identification real-time warning deep learning
下载PDF
Identification of constitutive model parameters for nickel aluminum bronze in machining 被引量:2
10
作者 付中涛 杨文玉 +2 位作者 曾思琪 郭步鹏 胡树兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1105-1111,共7页
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est... The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation. 展开更多
关键词 nickel aluminum bronze constitutive parameter Johnson-Cook model identification method
下载PDF
COMBINATION OF DISTRIBUTED KALMAN FILTER AND BP NEURAL NETWORK FOR ESG BIAS MODEL IDENTIFICATION 被引量:3
11
作者 张克志 田蔚风 钱峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期226-231,共6页
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ... By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias. 展开更多
关键词 model identification distributed Kalman filter(DKF) back propagation neural network(BPNN) electrostatic suspended gyroscope(ESG)
下载PDF
Identification of Hammerstein Model Using Hybrid Neural Networks
12
作者 李世华 李奇 李捷 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期26-30,共5页
The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult... The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method. 展开更多
关键词 neural networks nonlinear systems identification Hammerstein model
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
13
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach 被引量:13
14
作者 Xiao-meng SONG Fan-zhe KONG +2 位作者 Che-sheng ZHAN Ji-wei HAN Xin-hua ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期1-17,共17页
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana... Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model. 展开更多
关键词 Xin'anjiang model global sensitivity analysis parameter identification meta-modeling approach response surface model
下载PDF
Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation 被引量:10
15
作者 Yin Qiang Zhou Li Wang Xinming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期375-383,共9页
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea... In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs. 展开更多
关键词 parameter identification rubber-bearing hysteretic behavior Bouc-Wen model sequential nonlinear least- square estimation
下载PDF
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
16
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
下载PDF
The Identification and Modeling of the Volcanic Weathering Crust in the Yingcheng Formation of the Xujiaweizi Fault Depression, Songliao Basin 被引量:5
17
作者 LIU Cai CHI Huanzhao +1 位作者 SHAN Xuanlong HAO Guoli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1339-1351,共13页
Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the ... Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed. 展开更多
关键词 Xujiaweizi fault depression Yingcheng Formation identification marks volcanic weathering crust developmental model
下载PDF
Identification of the Mechanical Joint Parameters with Model Uncertainty 被引量:3
18
作者 郭勤涛 张令弥 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期47-52,共6页
Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, ... Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints. 展开更多
关键词 joint parameter identification model updating model uncertainty response surface
下载PDF
Transformer real-time reliability model based on operating conditions 被引量:10
19
作者 HE Jian CHENG Lin SUN Yuan-zhang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第3期378-383,共6页
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient... Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation. 展开更多
关键词 Operational reliability real-time reliability model TRANSFORMER Winding hottest-pot temperature (HST)
下载PDF
Comprehensive security risk factor identification for small reservoirs with heterogeneous data based on grey relational analysis model 被引量:6
20
作者 Jing-chun Feng Hua-ai Huang +1 位作者 Yao Yin Ke Zhang 《Water Science and Engineering》 EI CAS CSCD 2019年第4期330-338,共9页
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ... Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data. 展开更多
关键词 Security risk factor identification Heterogeneous data Grey relational analysis model Relational degree Information entropy Conditional entropy Small reservoir GUANGXI
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部