Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r...Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.展开更多
Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the ef...Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the efficacy of AI in enhancing personal branding for musicians, particularly in crafting brand images based on emotions received from the artist’s music will improve the audience perceptions regarding the artist’s brand. Study used a quantitative approach for the research, gathering primary data from the survey of 191 people—music lovers, musicians and music producers. The survey focuses on preferences, perceptions, and behaviours related to music consumption and artist branding. The study results demonstrate the awareness and understanding of AI’s role in personal branding within the music industry. Also, results indicate that such an adaptive approach enhances audience perceptions of the artist and strengthens emotional connections. Furthermore, over 50% of the participants indicated a desire to attend live events where an artist’s brand image adapts dynamically to their emotions. The study focuses on novel approaches in personal branding based on the interaction of AI-driven emotional data. In contrast to traditional branding concepts, this study indicates that AI can suggest dynamic and emotionally resonant brand identities for artists. The real time audience response gives proper guidance for the decision-making. This study enriches the knowledge of AI’s applicability to branding processes in the context of the music industry and opens the possibilities for additional advancements in building emotionally appealing brand identities.展开更多
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro...Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.展开更多
Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bi...Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in...In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an...This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Fiv...In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Five-band image acquisition, image registration, image fusion and display output can be done within the system which uses FPGA as the main processor and the other three DSP as an algorithm processor. Making full use of Flexible and high-speed characteristics of FPGA, while an image fusion algorithm based on multi-wavelet transform is optimized and applied to the system. The final experimental results show that the frame rate of 15 Hz, with a resolution of 1392 × 1040 of the five-band image can be used by the system to complete processing within 41ms.展开更多
Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for co...Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for complex texture distribution.In order to extract the nature images with complex texture distribution,we design an information entropy approach to estimate the scalable variance.Secondly,when the opacity is near the boundary of the value range,Bayesian matting method may be failure because of the error computation of opacity.Therefore,a rectification approach is proposed to adjust the computation model and keep the opacity within the valid value range.Thirdly,Bayesian matting is a local sample method which may miss some valid samples of matting.We propose a selection function to integrate valid global sample matting result into above matting framework as a supplement to the local sample matting result.The proposed function is compose of three criteria,that is,the similarity of results,the overlapping degree of samples,and the similarity of neighborhood.Fourthly,in order to obtain a smooth and vivid matte,the result is further refined by considering correlation between neighbouring pixels.Finally,We use online benchmark for image matting to evaluate the proposed method with both qualitative observation and quantitative analysis.The experiments show that our method achieves a competitive advantages over other methods.展开更多
Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when usin...Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when using X-ray CT for positioning and treatment planning systems(TPSs).Following the development of FLASH proton therapy,there are increased requirements for accurate and rapid positioning in TPSs.Thus,a new rapid proton CT imaging mode is proposed based on sparsely sampled projections.The proton beam was boosted to 350 MeV by a compact proton linear accelerator(LINAC).In this study,the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations.As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction,X-ray CT is used as a prior image.The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations.Considering the estimation of the most likely path(MLP),the prior image-constrained compressed sensing(PICCS)algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam.The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper.It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy(IGRT)in clinical proton therapy applications.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out wo...X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.展开更多
AIM: To investigate if magnetic resonance(MR)-guided biopsy can improve the performance and safety of such procedures. METHODS: A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5...AIM: To investigate if magnetic resonance(MR)-guided biopsy can improve the performance and safety of such procedures. METHODS: A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging(MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. RESULTS: Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance(imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists.CONCLUSION: MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023016).
文摘Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.
文摘Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the efficacy of AI in enhancing personal branding for musicians, particularly in crafting brand images based on emotions received from the artist’s music will improve the audience perceptions regarding the artist’s brand. Study used a quantitative approach for the research, gathering primary data from the survey of 191 people—music lovers, musicians and music producers. The survey focuses on preferences, perceptions, and behaviours related to music consumption and artist branding. The study results demonstrate the awareness and understanding of AI’s role in personal branding within the music industry. Also, results indicate that such an adaptive approach enhances audience perceptions of the artist and strengthens emotional connections. Furthermore, over 50% of the participants indicated a desire to attend live events where an artist’s brand image adapts dynamically to their emotions. The study focuses on novel approaches in personal branding based on the interaction of AI-driven emotional data. In contrast to traditional branding concepts, this study indicates that AI can suggest dynamic and emotionally resonant brand identities for artists. The real time audience response gives proper guidance for the decision-making. This study enriches the knowledge of AI’s applicability to branding processes in the context of the music industry and opens the possibilities for additional advancements in building emotionally appealing brand identities.
基金Project supported by the National Key R&D Program of China(Grant No.SKLA02020001A05)。
文摘Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.41972287 and 42090023)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
文摘In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
文摘This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.
文摘In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Five-band image acquisition, image registration, image fusion and display output can be done within the system which uses FPGA as the main processor and the other three DSP as an algorithm processor. Making full use of Flexible and high-speed characteristics of FPGA, while an image fusion algorithm based on multi-wavelet transform is optimized and applied to the system. The final experimental results show that the frame rate of 15 Hz, with a resolution of 1392 × 1040 of the five-band image can be used by the system to complete processing within 41ms.
文摘Bayesian Matting has four limitations.Firstly,Bayesian matting makes strong assumption that the texture distribution of nature image satisfies Gaussian distribution with fixed variance.This assumption will fail for complex texture distribution.In order to extract the nature images with complex texture distribution,we design an information entropy approach to estimate the scalable variance.Secondly,when the opacity is near the boundary of the value range,Bayesian matting method may be failure because of the error computation of opacity.Therefore,a rectification approach is proposed to adjust the computation model and keep the opacity within the valid value range.Thirdly,Bayesian matting is a local sample method which may miss some valid samples of matting.We propose a selection function to integrate valid global sample matting result into above matting framework as a supplement to the local sample matting result.The proposed function is compose of three criteria,that is,the similarity of results,the overlapping degree of samples,and the similarity of neighborhood.Fourthly,in order to obtain a smooth and vivid matte,the result is further refined by considering correlation between neighbouring pixels.Finally,We use online benchmark for image matting to evaluate the proposed method with both qualitative observation and quantitative analysis.The experiments show that our method achieves a competitive advantages over other methods.
基金supported by the Research collaboration on Thailand’s new synchrotron light source facility(SPS-II)(No.ANSO-CR-KP-2020-16).
文摘Proton computed tomography(CT)has a distinct practical significance in clinical applications.It eliminates 3–5%errors caused by the transformation of Hounsfield unit(HU)to relative stopping power(RSP)values when using X-ray CT for positioning and treatment planning systems(TPSs).Following the development of FLASH proton therapy,there are increased requirements for accurate and rapid positioning in TPSs.Thus,a new rapid proton CT imaging mode is proposed based on sparsely sampled projections.The proton beam was boosted to 350 MeV by a compact proton linear accelerator(LINAC).In this study,the comparisons of the proton scattering with the energy of 350 MeV and 230 MeV are conducted based on GEANT4 simulations.As the sparsely sampled information associated with beam acquisitions at 12 angles is not enough for reconstruction,X-ray CT is used as a prior image.The RSP map generated by converting the X-ray CT was constructed based on Monte Carlo simulations.Considering the estimation of the most likely path(MLP),the prior image-constrained compressed sensing(PICCS)algorithm is used to reconstruct images from two different phantoms using sparse proton projections of 350 MeV parallel proton beam.The results show that it is feasible to realize the proton image reconstruction with the rapid proton CT imaging proposed in this paper.It can produce RSP maps with much higher accuracy for TPSs and fast positioning to achieve ultra-fast imaging for real-time image-guided radiotherapy(IGRT)in clinical proton therapy applications.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
文摘X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.
基金Supported by The German Research Foundation(KA493/6_1)
文摘AIM: To investigate if magnetic resonance(MR)-guided biopsy can improve the performance and safety of such procedures. METHODS: A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging(MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. RESULTS: Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance(imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists.CONCLUSION: MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.