A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temper...In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temperature with real time. So the control system design and control strategy are described in detail to accomplish the horizontality monitoring and adjusting. The system adopts the industry control computer as the upper computer and the SIEMENS S7-300 PLC as the lower computer. The upper computer that bases on industry configuration software IFIX takes charge of monitoring the platform and puts forward the control strategy. PLC takes charge of receiving the adjusting instructions and controlling the legs moving to accomplish the horizontality adjusting. The horizontality adjusting strategy is emphasized and the concept of grads is introduced to establish a mathematics model of the platform inclined state, so the adjusting method is obtained. Accordingly the key question of the automatic horizontality adjusting is solved in this control system.展开更多
The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via vi...The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via video conferencing tools.Although real-time interactive class with using video conferencing tools had great advantages,but there were also limitations of active interaction.To this end,real-time interactive tool and cloud-based educational platform were applied to create cases of learner participation classes and analyze the cases.The convergence of real-time interactive class tools and cloud tools has been able to draw students’participation and collaboration in non-face-to-face situations,and it can be seen that it is very helpful in creating learner-centered educational activities based on communication and interaction with students.Through this,the application of the cloud-based educational platform in real-time interactive class could lead students to participate and collaborate even in non-face-to-face situations.展开更多
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
This paper is concerned with the practical application control of a pneumatically actuated Stewart-Gough platform with 6-degrees of freedom (6-DOF). The control approach for motion control of the platform is present...This paper is concerned with the practical application control of a pneumatically actuated Stewart-Gough platform with 6-degrees of freedom (6-DOF). The control approach for motion control of the platform is presented using a modern control technique, namely, linear quadratic Gaussinn (LQG) with reference tracking. The LQG controller is the combination of a Kalman filter, i.e., a linear-quadratic estimator (LQE) with a linear-quadratic regulator (LQR). The robustness of the control scheme is accessed under various load conditions, and the experimental results are shown.展开更多
Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Withou...Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Without real measured data, this paper analyzes fault modes and fault effects of the fuel tank system, including its tankaccessories, of a given aircraft. Fault model of the system is built theoretically, and fault diagnosis criteria are deduced. Such criteria are then quantified to train a back propagation neural network(BPNN) as fault diagnosis model. To realize fault diagnosis of the real fuel tank system, a real-time fault diagnosis platform based on Lab View and Vx Works to perform this diagnosis method is discussed. This platform is a technical groundwork for fault diagnosis in real fuel tank systems.展开更多
An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field...An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.展开更多
A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes ...A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes which drive the conversion of nitrogen in paddy soil were analyzed during the growth period of rice in the fifth year of the experiment, using 16 S rRNAbased Illumina Mi Seq and real-time PCR on the amoA, nirS and nirK genes. The results showed no differences in the alpha diversity indexes of the bacterial communities, including Chao1, Shannon and Simpson, between the fields cultivated with line GM and cultivar M at any of the growth stages of rice. However, the bacterial communities in the paddy soil with line GM were separated from those of paddy soil with cultivar M at each of the growth stages of rice, based on the unweighted Uni Frac NMDS or PCoA. In addition, the analyses of ADONIS and ANOSIM, based on the unweighted Uni Frac distance, indicated that the above separations between line GM and cultivar M were statistically significant(P<0.05) during the growth season of rice. The increases in the relative abundances of Acidobacteria or Bacteroidetes, in the paddy soils with line GM or cultivar M, respectively, led to the differences in the bacterial communities between them. At the same time, functional gene prediction based on Illumina Mi Seq data suggested that the abundance of many functional genes increased in the paddy soil with line GM at the maturity stage of rice, such as genes related to the metabolism of starch, amino acids and nitrogen. Otherwise, the copies of bacterial amo A gene, archaeal amo A gene and denitrifying bacterial nir K gene significantly increased(P<0.05 or 0.01) in the paddy soil with line GM. In summary, the release of cry1Ab transgenic rice had effects on either the composition of bacterial communities or the abundance of microbial functional genes in the paddy soil.展开更多
This paper analyzes the threat of TCG Software Stack(TSS)/TCM Service Module(TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism.In addition,this paper puts forward a dynamic p...This paper analyzes the threat of TCG Software Stack(TSS)/TCM Service Module(TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism.In addition,this paper puts forward a dynamic priority task scheduling strategy based on value evaluation to handle this threat.The strategy is based on the implementation features of trusted hardware and establishes a multi-level ready queue.In this strategy,an algorithm for real-time value computing is also designed,and it can adjust the production curves of the real time value by setting parameters in different environment,thus enhancing its adaptability,which is followed by scheduling and algorithm description.This paper also implements the algorithm and carries out its performance optimization.Due to the experiment result from Intel NUC,it is shown that TSS based on advanced DPTSV is able to solve the problem of deadlock with no negative influence on performance and security in multi-user environment.展开更多
Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents...Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents a design and implementation of a real time wireless monitor system for urinary incontinence, which has been applied in two nursing homes in Beijing and Shanghai. We collect real time moisture information by using non-contact humidity sensor designed and manufactured by us. When urinary incontinence, the sensor will send alert to mobile device via Bluetooth. If got the alert, the mobile device will send the alert to relatives of the aged or disabled people and cloud computing platform, through which we can make this information managed and displayed and the paramedic can be informed about the alarm. This paper gives a brief introduction to the framework of this system, the design of the non-contact sensor, the transmission of wireless data and the results of tests.展开更多
The negative-sequence reactive power-conductance(Q^(−)-G) droop control strategy is a conventional method to compensate for the output unbalanced voltages in an islanded MG.Nevertheless, the conflict between unbalance...The negative-sequence reactive power-conductance(Q^(−)-G) droop control strategy is a conventional method to compensate for the output unbalanced voltages in an islanded MG.Nevertheless, the conflict between unbalanced voltage compensation and negative-sequence reactive power sharing, caused bythe impedance mismatching of distribution lines and distributedgenerators, has not been solved only by Q^(−)-G droop control.In this paper, a distributed cooperative secondary unbalancedvoltage control strategy is proposed to decrease the outputvoltage unbalance factor (VUF) of each droop-controlled DG,as well as to further enhance the negative-sequence reactivepower sharing effectiveness among DGs by properly shiftingup and down the Q^(−)-G droop characteristics of each DG.An algorithm for adaptive VUF weight coefficient is proposedto better suppress VUF under severe imbalance conditions.Furthermore, a negative-sequence small-signal model of an MGunder an unbalanced condition, considering the communicationdelay time of the proposed SUVC, is established to analyze thesystem’s stability and transient performance under the influenceof some critical parameters. Finally, the effectiveness of theproposed strategy is validated by the simulation results froma real-time emulator of StarSim HIL.展开更多
The major hindrances in the energy system are ecological consciousness, lack of clean and sustainableenergy management, insufficient energy distribution–transmission–optimization, expensive power transfercosts, and ...The major hindrances in the energy system are ecological consciousness, lack of clean and sustainableenergy management, insufficient energy distribution–transmission–optimization, expensive power transfercosts, and increased customer knowledge of energy charges. Thus why, universal access to the grid with highcybersecurity, and reliability is needed to solve all these challenges. The digital twin concept turns a newdimension of technology into the world. Electric Digital Twin grid can perform online analysis of the grid inreal-time and integrates all the past and present data and express the current grid status to the producers andconsumers and also predicts the future grid status. Thus, the power grid transmission loss and location of theoverheated line and power connection missing can be detected in addition decision-making and self-healingcan possible. The future prediction saves the power grid from small to long accidents such as power outagesand even blackout problems. The whole consumers and nation feel relief from these types of accidents andsaves from large economic and business loss. The blockchain-enabled digital twin grid provides high securityfor the grid from cyberattacks. The paper conveys the framework of the electric digital twin grid and theconcept of the DT grid processing and the way of serving the producer, prosumers, consumers even the wholenation in infrastructure, education, research, economic, business, and political development.展开更多
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘In order to satisfy a satellite horizontality requirement in an experiment, it is indispensable to monitor and adjust the horizontality of a large platform loading the satellite under the condition of ultra-low temperature with real time. So the control system design and control strategy are described in detail to accomplish the horizontality monitoring and adjusting. The system adopts the industry control computer as the upper computer and the SIEMENS S7-300 PLC as the lower computer. The upper computer that bases on industry configuration software IFIX takes charge of monitoring the platform and puts forward the control strategy. PLC takes charge of receiving the adjusting instructions and controlling the legs moving to accomplish the horizontality adjusting. The horizontality adjusting strategy is emphasized and the concept of grads is introduced to establish a mathematics model of the platform inclined state, so the adjusting method is obtained. Accordingly the key question of the automatic horizontality adjusting is solved in this control system.
文摘The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via video conferencing tools.Although real-time interactive class with using video conferencing tools had great advantages,but there were also limitations of active interaction.To this end,real-time interactive tool and cloud-based educational platform were applied to create cases of learner participation classes and analyze the cases.The convergence of real-time interactive class tools and cloud tools has been able to draw students’participation and collaboration in non-face-to-face situations,and it can be seen that it is very helpful in creating learner-centered educational activities based on communication and interaction with students.Through this,the application of the cloud-based educational platform in real-time interactive class could lead students to participate and collaborate even in non-face-to-face situations.
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
文摘This paper is concerned with the practical application control of a pneumatically actuated Stewart-Gough platform with 6-degrees of freedom (6-DOF). The control approach for motion control of the platform is presented using a modern control technique, namely, linear quadratic Gaussinn (LQG) with reference tracking. The LQG controller is the combination of a Kalman filter, i.e., a linear-quadratic estimator (LQE) with a linear-quadratic regulator (LQR). The robustness of the control scheme is accessed under various load conditions, and the experimental results are shown.
文摘Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Without real measured data, this paper analyzes fault modes and fault effects of the fuel tank system, including its tankaccessories, of a given aircraft. Fault model of the system is built theoretically, and fault diagnosis criteria are deduced. Such criteria are then quantified to train a back propagation neural network(BPNN) as fault diagnosis model. To realize fault diagnosis of the real fuel tank system, a real-time fault diagnosis platform based on Lab View and Vx Works to perform this diagnosis method is discussed. This platform is a technical groundwork for fault diagnosis in real fuel tank systems.
基金Research presented in this paper was funded by the National Key Research and Development Program of China[grant numbers 2016YFB0501503 and 2016YFB0501502]Hainan Provincial Department of Science and Technology[grant number ZDKJ2016021].
文摘An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (2016ZX08001-001)。
文摘A field experiment involving cry1Ab transgenic rice(GM) and its parental non-cry1Ab rice(M) has been on-going since 2014. The diversity of the bacterial communities and the abundance of the microbial functional genes which drive the conversion of nitrogen in paddy soil were analyzed during the growth period of rice in the fifth year of the experiment, using 16 S rRNAbased Illumina Mi Seq and real-time PCR on the amoA, nirS and nirK genes. The results showed no differences in the alpha diversity indexes of the bacterial communities, including Chao1, Shannon and Simpson, between the fields cultivated with line GM and cultivar M at any of the growth stages of rice. However, the bacterial communities in the paddy soil with line GM were separated from those of paddy soil with cultivar M at each of the growth stages of rice, based on the unweighted Uni Frac NMDS or PCoA. In addition, the analyses of ADONIS and ANOSIM, based on the unweighted Uni Frac distance, indicated that the above separations between line GM and cultivar M were statistically significant(P<0.05) during the growth season of rice. The increases in the relative abundances of Acidobacteria or Bacteroidetes, in the paddy soils with line GM or cultivar M, respectively, led to the differences in the bacterial communities between them. At the same time, functional gene prediction based on Illumina Mi Seq data suggested that the abundance of many functional genes increased in the paddy soil with line GM at the maturity stage of rice, such as genes related to the metabolism of starch, amino acids and nitrogen. Otherwise, the copies of bacterial amo A gene, archaeal amo A gene and denitrifying bacterial nir K gene significantly increased(P<0.05 or 0.01) in the paddy soil with line GM. In summary, the release of cry1Ab transgenic rice had effects on either the composition of bacterial communities or the abundance of microbial functional genes in the paddy soil.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.91118003)the National Natural Science Foundation of China(Grant No.61173138,61272452,61332019)+1 种基金the National Basic Research Program of China("973"Program)(Grant No.2014CB340600)the National High-Tech Research and Development Program of China("863"Program)(Grant No.2015AA016002)
文摘This paper analyzes the threat of TCG Software Stack(TSS)/TCM Service Module(TSM) deadlock in multi-user environment such as cloud and discusses its causes and mechanism.In addition,this paper puts forward a dynamic priority task scheduling strategy based on value evaluation to handle this threat.The strategy is based on the implementation features of trusted hardware and establishes a multi-level ready queue.In this strategy,an algorithm for real-time value computing is also designed,and it can adjust the production curves of the real time value by setting parameters in different environment,thus enhancing its adaptability,which is followed by scheduling and algorithm description.This paper also implements the algorithm and carries out its performance optimization.Due to the experiment result from Intel NUC,it is shown that TSS based on advanced DPTSV is able to solve the problem of deadlock with no negative influence on performance and security in multi-user environment.
文摘Urinary incontinence is the most common health problem in aged people. Leaving incontinence events unmanaged will make a negative influence on the aged and the patient both mentally and physically. This paper presents a design and implementation of a real time wireless monitor system for urinary incontinence, which has been applied in two nursing homes in Beijing and Shanghai. We collect real time moisture information by using non-contact humidity sensor designed and manufactured by us. When urinary incontinence, the sensor will send alert to mobile device via Bluetooth. If got the alert, the mobile device will send the alert to relatives of the aged or disabled people and cloud computing platform, through which we can make this information managed and displayed and the paramedic can be informed about the alarm. This paper gives a brief introduction to the framework of this system, the design of the non-contact sensor, the transmission of wireless data and the results of tests.
基金supported by the National Key Research and Development Program of China(2021YFB2601402).
文摘The negative-sequence reactive power-conductance(Q^(−)-G) droop control strategy is a conventional method to compensate for the output unbalanced voltages in an islanded MG.Nevertheless, the conflict between unbalanced voltage compensation and negative-sequence reactive power sharing, caused bythe impedance mismatching of distribution lines and distributedgenerators, has not been solved only by Q^(−)-G droop control.In this paper, a distributed cooperative secondary unbalancedvoltage control strategy is proposed to decrease the outputvoltage unbalance factor (VUF) of each droop-controlled DG,as well as to further enhance the negative-sequence reactivepower sharing effectiveness among DGs by properly shiftingup and down the Q^(−)-G droop characteristics of each DG.An algorithm for adaptive VUF weight coefficient is proposedto better suppress VUF under severe imbalance conditions.Furthermore, a negative-sequence small-signal model of an MGunder an unbalanced condition, considering the communicationdelay time of the proposed SUVC, is established to analyze thesystem’s stability and transient performance under the influenceof some critical parameters. Finally, the effectiveness of theproposed strategy is validated by the simulation results froma real-time emulator of StarSim HIL.
文摘The major hindrances in the energy system are ecological consciousness, lack of clean and sustainableenergy management, insufficient energy distribution–transmission–optimization, expensive power transfercosts, and increased customer knowledge of energy charges. Thus why, universal access to the grid with highcybersecurity, and reliability is needed to solve all these challenges. The digital twin concept turns a newdimension of technology into the world. Electric Digital Twin grid can perform online analysis of the grid inreal-time and integrates all the past and present data and express the current grid status to the producers andconsumers and also predicts the future grid status. Thus, the power grid transmission loss and location of theoverheated line and power connection missing can be detected in addition decision-making and self-healingcan possible. The future prediction saves the power grid from small to long accidents such as power outagesand even blackout problems. The whole consumers and nation feel relief from these types of accidents andsaves from large economic and business loss. The blockchain-enabled digital twin grid provides high securityfor the grid from cyberattacks. The paper conveys the framework of the electric digital twin grid and theconcept of the DT grid processing and the way of serving the producer, prosumers, consumers even the wholenation in infrastructure, education, research, economic, business, and political development.