Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information manageme...In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information management system according to spatial distribution of tractor cab. Then,it analyzed operation habits and thinking ways of drivers,and formulated design principle meeting demands of drivers. Besides,it used LabView software to design user interface,including interface layout and interface design. User interface includes basic information interface,job information interface,camera monitoring interface,and fault diagnosis interface. Finally,it made evaluation of the user interface from color,indicator lamp,dial,and pointer. Results indicate that the designed user interface layout conforms to cognition mentality and operation habits and easy to get familiar and grasp; graphical interface is vivid and easy to stimulate pleasure of drivers in operation; interface color matching is coordinated; the layout of controls is hierarchical and logic,and operating mode is consistent with Windows system.展开更多
Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for pra...Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for practical applications is real-time data collection and processing. In this paper, a real-time BCI system is implemented on computer with electroencephalogram amplifier. In our implementation, the on-line voting method is adopted for feedback control strategy, and the voting results are used to control the cursor horizontal movement. Three subjects take part in the experiment. The results indicate that the best accuracy is 90%.展开更多
In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was suc...In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was successfully developed. These markers are invariant from voltage amplitude of brain waves, eliminating the need for calibrating the voltage output of the brain-computer interface devices. A new polling algorithm was designed and implemented for computing the depth of drowsiness. The time cost of data acquisition and processing for each estimate is about one second, which is well suited for real-time applications. Test results with a portable brain-computer interface device show that the depth of drowsiness computed by the method in this paper is generally invariant from ages of test subjects and sensor channels (P3 and C4). The comparison between experiment and computing results indicate that the new method is noticeably better than one of the recent methods in terms of accuracy for predicting the drowsiness.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function ...In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.展开更多
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl...The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present...Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.展开更多
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)...The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.展开更多
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the or...Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金Supported by Science and Technology Support Program of Jiangsu Province(Agriculture)(BE2012384)Special Fund for Conversion of Scientific and Technological Achievements in Jiangsu Province(BA2010055)
文摘In this paper,the user interface of tractor cab real-time information management system was designed. Based on the principle of "user friendly",it reasonably arranged spatial position of information management system according to spatial distribution of tractor cab. Then,it analyzed operation habits and thinking ways of drivers,and formulated design principle meeting demands of drivers. Besides,it used LabView software to design user interface,including interface layout and interface design. User interface includes basic information interface,job information interface,camera monitoring interface,and fault diagnosis interface. Finally,it made evaluation of the user interface from color,indicator lamp,dial,and pointer. Results indicate that the designed user interface layout conforms to cognition mentality and operation habits and easy to get familiar and grasp; graphical interface is vivid and easy to stimulate pleasure of drivers in operation; interface color matching is coordinated; the layout of controls is hierarchical and logic,and operating mode is consistent with Windows system.
基金supported by the National Natural Science Foundation of China under Grant No. 60571019UESTC Youth Foundation under Grant No. L08010901JX0772 for support.
文摘Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for practical applications is real-time data collection and processing. In this paper, a real-time BCI system is implemented on computer with electroencephalogram amplifier. In our implementation, the on-line voting method is adopted for feedback control strategy, and the voting results are used to control the cursor horizontal movement. Three subjects take part in the experiment. The results indicate that the best accuracy is 90%.
文摘In this paper, we proposed a new concept: depth of drowsiness, which can more precisely describe the drowsiness than existing binary description. A set of effective markers for drowsiness: normalized band norm was successfully developed. These markers are invariant from voltage amplitude of brain waves, eliminating the need for calibrating the voltage output of the brain-computer interface devices. A new polling algorithm was designed and implemented for computing the depth of drowsiness. The time cost of data acquisition and processing for each estimate is about one second, which is well suited for real-time applications. Test results with a portable brain-computer interface device show that the depth of drowsiness computed by the method in this paper is generally invariant from ages of test subjects and sensor channels (P3 and C4). The comparison between experiment and computing results indicate that the new method is noticeably better than one of the recent methods in terms of accuracy for predicting the drowsiness.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金supported by the NSFC(11931013)the GXNSF(2022GXNSFDA035078)。
文摘In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.
基金Agency for Science,Technology and Research(A*STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant(Grant no.A18B1b0061)。
文摘The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金the National Key Research and Development Program of China(No.2020YFC1107501)the National Natural Science Foundation of China(No.51971222,51801220)+4 种基金the Natural Science Foundation of Liaoning Province of China(No.2020-MS-001)the Dong Guan Innovative Research Team Program(No.2020607134012)the Military Translational Medicine Fund of Chinese PLA General Hospital(ZH19008)Capital’s Funds for Health Improvement and Research(CFH 2022-2-5051)the Dong Guan Science and Technology Service Network Initiative(20201600200042)。
文摘Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52203261)Natural Science Foundation of Jiangsu Province(BK20210474)the project of research on the industrial application of"controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(N0.CJGJZD20210408092400002).
文摘The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金supported by the Bristol Centre for Functional Nanomaterials and GlaxoSmithKline.
文摘Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.