Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualizati...Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of &...In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.展开更多
When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the buildin...When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.展开更多
Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step...Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step leading to lower in-corn memory consumption. This algorithm is applied to reconstructing compact terrain with mobile robot, achieving satisfying results.展开更多
Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser sca...Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.展开更多
This paper aims at multi_scale representation of urban GIS,presenting a model to dynamically generalize the building on the basis of Delaunay triangulation model.Considering the constraints of position accuracy,statis...This paper aims at multi_scale representation of urban GIS,presenting a model to dynamically generalize the building on the basis of Delaunay triangulation model.Considering the constraints of position accuracy,statistical area balance and orthogonal characteristics in building cluster generalization,this paper gives a progressive algorithm of building cluster aggregation,including conflict detection (where),object (who) displacement,and geometrical combination operation (how).The algorithm has been realized in an interactive generalization system and some experiment illustrations are provided.展开更多
The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Si...The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.展开更多
This paper presents a field based method to deal with the displacement of building cluster, which is driven by the street widening. The compress of street boundary results in the force to push the building moving insi...This paper presents a field based method to deal with the displacement of building cluster, which is driven by the street widening. The compress of street boundary results in the force to push the building moving inside and the force propagation is a decay process. To describe the phenomenon above, the field theory is introduced with the representation model of isoline. On the basis of the skeleton of Delaunay triangulation, the displacement field is built in which the propagation force is related to the adjacency degree with respect to the street boundary. The study offers the computation of displacement direction and offset distance for the building displacement. The vector operation is performed on the basis of grade and other field concepts.展开更多
Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, et...Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, etc.). These images feature a rough localization and no orientation information. Nevertheless, they can help to populate an active collaborative database of street images usable to maintain a city 3D model, but their localization and orientation need to be known. Based on these images, we propose the Data Gathering system for image Pose Estimation (DGPE) that helps to find the pose (position and orientation) of the camera used to shoot them with better accuracy than the sole GPS localization that may be embedded in the image header. DGPE uses both visual and semantic information, existing in a single image processed by a fully automatic chain composed of three main layers: Data retrieval and preprocessing layer, Features extraction layer, Decision Making layer. In this article, we present the whole system details and compare its detection results with a state of the art method. Finally, we show the obtained localization, and often orientation results, combining both semantic and visual information processing on 47 images. Our multilayer system succeeds in 26% of our test cases in finding a better localization and orientation of the original photo. This is achieved by using only the image content and associated metadata. The use of semantic information found on social media such as comments, hash tags, etc. has doubled the success rate to 59%. It has reduced the search area and thus made the visual search more accurate.展开更多
The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information abou...The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information about inundation areas and building damage characteristics in attacking east coastal areas by this tsunami. In this study, building damage data of Ishinomaki city, with special attention to the plain coast affected area, are classified and analyzed using data surveyed by the Ministry of Lands, Infrastructure and Transportation of Japan (MLIT) for more than 52,000 structures. The classification includes information on six levels of damage, four types of building materials and damages due to tsunami inundation for each building material which are necessary information for an effective hazard mitigation. Notably, damage level percentage distribution of different building materials is plotted for different inundation depth ranges in several sets of figures. This graphic illustration not only shows a better resistant performance of Reinforced Concrete (RC) and steel buildings over wood or other buildings for all inundation depth ranges, but also can explain clearly the inundation-induced damage behavior for each building material as well as the threshold depth for each damage level. Moreover, this research contains an analysis of vulnerable areas due to the coastal topography and the geographical factors. Surveyed data provided by Geospatial information authority of Japan (GSI) that classifies Ishinomaki plain coast area into three classes are compared with the damage map produced using an Analytical Hierarchy Process (AHP) methodology in ArcGIS 10.2 environment. The influence of key geographical features on tsunami-induced building damage, notably Kitakami river and water canals flooding, is taken into account with respect to the weighting of factors. A good agreement produced building damage map with surveyed GSI data shows the power of a GIS tool based on the AHP approach for tsunami damage assessment. The results of this study are useful to understand the damage behavior of buildings with different structural materials located in coastal areas vulnerable to the tsunami disaster.展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
为有效解决建筑工业化和智能化协同发展所面临的问题,中国正积极促进建筑信息模型(Building Information Modeling,BIM)支持下装配式建筑的发展。运用了文献计量分析方法,对2011—2021年中国BIM体系下装配式建筑的研究趋势、作者和机构...为有效解决建筑工业化和智能化协同发展所面临的问题,中国正积极促进建筑信息模型(Building Information Modeling,BIM)支持下装配式建筑的发展。运用了文献计量分析方法,对2011—2021年中国BIM体系下装配式建筑的研究趋势、作者和机构集群及研究热点关键词进行了可视化图谱分析,旨在提高建筑从业者对BIM体系下装配式建筑的综合认知。研究发现:跨地域机构研究承接协同、“装配式建筑-BIM-EPC”一体化及运营维护的全生命周期设计管理是未来的重点研究方向。展开更多
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
基金Supported by National Natural Science Foundation of China(Nos.61170205,61232014,61472010 and 61421062)National Key Technology Support Program of China(No.2013BAK03B07)
文摘Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金This project was supported by the National High-Tech Research and Development Plan (2001AA422140) National Science Foundation (69889501, 60105005).
文摘In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/This research was funded by Korea Transportation Science and Technology Promotion Agency(No.21QPWO-B152223-03),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.
文摘Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step leading to lower in-corn memory consumption. This algorithm is applied to reconstructing compact terrain with mobile robot, achieving satisfying results.
基金Jiangxi Social Science Planning Project:Research on the Activation of Traditional Villages in Jiangxi Province from the Perspective of Cultural Conservation:A Case Study of Fuhe River Basin(Grant No.17BJ16).
文摘Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.
文摘This paper aims at multi_scale representation of urban GIS,presenting a model to dynamically generalize the building on the basis of Delaunay triangulation model.Considering the constraints of position accuracy,statistical area balance and orthogonal characteristics in building cluster generalization,this paper gives a progressive algorithm of building cluster aggregation,including conflict detection (where),object (who) displacement,and geometrical combination operation (how).The algorithm has been realized in an interactive generalization system and some experiment illustrations are provided.
文摘The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.
文摘This paper presents a field based method to deal with the displacement of building cluster, which is driven by the street widening. The compress of street boundary results in the force to push the building moving inside and the force propagation is a decay process. To describe the phenomenon above, the field theory is introduced with the representation model of isoline. On the basis of the skeleton of Delaunay triangulation, the displacement field is built in which the propagation force is related to the adjacency degree with respect to the street boundary. The study offers the computation of displacement direction and offset distance for the building displacement. The vector operation is performed on the basis of grade and other field concepts.
文摘Cities are in constant change and city managers aim to keep an updated digital model of the city for city governance. There are a lot of images uploaded daily on image sharing platforms (as “Flickr”, “Twitter”, etc.). These images feature a rough localization and no orientation information. Nevertheless, they can help to populate an active collaborative database of street images usable to maintain a city 3D model, but their localization and orientation need to be known. Based on these images, we propose the Data Gathering system for image Pose Estimation (DGPE) that helps to find the pose (position and orientation) of the camera used to shoot them with better accuracy than the sole GPS localization that may be embedded in the image header. DGPE uses both visual and semantic information, existing in a single image processed by a fully automatic chain composed of three main layers: Data retrieval and preprocessing layer, Features extraction layer, Decision Making layer. In this article, we present the whole system details and compare its detection results with a state of the art method. Finally, we show the obtained localization, and often orientation results, combining both semantic and visual information processing on 47 images. Our multilayer system succeeds in 26% of our test cases in finding a better localization and orientation of the original photo. This is achieved by using only the image content and associated metadata. The use of semantic information found on social media such as comments, hash tags, etc. has doubled the success rate to 59%. It has reduced the search area and thus made the visual search more accurate.
文摘The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information about inundation areas and building damage characteristics in attacking east coastal areas by this tsunami. In this study, building damage data of Ishinomaki city, with special attention to the plain coast affected area, are classified and analyzed using data surveyed by the Ministry of Lands, Infrastructure and Transportation of Japan (MLIT) for more than 52,000 structures. The classification includes information on six levels of damage, four types of building materials and damages due to tsunami inundation for each building material which are necessary information for an effective hazard mitigation. Notably, damage level percentage distribution of different building materials is plotted for different inundation depth ranges in several sets of figures. This graphic illustration not only shows a better resistant performance of Reinforced Concrete (RC) and steel buildings over wood or other buildings for all inundation depth ranges, but also can explain clearly the inundation-induced damage behavior for each building material as well as the threshold depth for each damage level. Moreover, this research contains an analysis of vulnerable areas due to the coastal topography and the geographical factors. Surveyed data provided by Geospatial information authority of Japan (GSI) that classifies Ishinomaki plain coast area into three classes are compared with the damage map produced using an Analytical Hierarchy Process (AHP) methodology in ArcGIS 10.2 environment. The influence of key geographical features on tsunami-induced building damage, notably Kitakami river and water canals flooding, is taken into account with respect to the weighting of factors. A good agreement produced building damage map with surveyed GSI data shows the power of a GIS tool based on the AHP approach for tsunami damage assessment. The results of this study are useful to understand the damage behavior of buildings with different structural materials located in coastal areas vulnerable to the tsunami disaster.
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
文摘为有效解决建筑工业化和智能化协同发展所面临的问题,中国正积极促进建筑信息模型(Building Information Modeling,BIM)支持下装配式建筑的发展。运用了文献计量分析方法,对2011—2021年中国BIM体系下装配式建筑的研究趋势、作者和机构集群及研究热点关键词进行了可视化图谱分析,旨在提高建筑从业者对BIM体系下装配式建筑的综合认知。研究发现:跨地域机构研究承接协同、“装配式建筑-BIM-EPC”一体化及运营维护的全生命周期设计管理是未来的重点研究方向。