In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and imp...In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.展开更多
In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular ...In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular meshes of non-uniform structure, a technique that is quite different from other mesh tiling approaches. A complete, memory efficient set of mesh patterns is created by an off-line procedure and stored into the graphics adapter's memory at runtime. At rendering time, for each tile, one of the precomputed mesh patterns is selected for rendering. The selected mesh pattern fits the required level of details of the tile and ensures seamless connection with other adjacent mesh patterns, like in a game of dominoes. The scalability potential of the proposed method is demonstrated through quadtree hierarchical grouping of tiles. The efficiency is verified by experimental results on height fields for terrain representation, where the method achieves high frame rates and sustained triangle throughput on high resolution viewports with sub-pixel error tolerance. Frame rate sensitivity to real-time modifications of the height field is measured, and it is shown that the method is very tolerant and consequently well tailored for applications dealing with rapidly changeable phenomena represented by height fields.展开更多
The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability f...The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability for businesses to quickly respond to new market opportunities due to changing requirements. As a response, the software development community developed the Agile Methodologies (e.g., extreme Programming, Scrum) which were also adopted by the Embedded System community. However, failures and bad experiences in applying Agile Methodologies to the development of embedded systems have not been reported in the literature. Therefore, this paper contributes a detailed account of our first-time experiences adopting an agile approach in the prototype development of a wireless environment data acquisition system in an academic environment. We successfully applied a subset of the extreme Programming (XP) methodology to our software development using the Python programming language, an experience that demonstrated its benefits in shaping the design of the software and also increasing productivity. We used an incremental development approach for the hardware components and adopted a “cumulative testing” approach. For the overall development process management, however, we concluded that the Promise/Commitment-Based Project Management (PB-PM/CBPM) was better suited. We discovered that software and hardware components of embedded systems are best developed in parallel or near-parallel. We learned that software components that pass automated tests may not survive in the tests against the hardware. Throughout this rapid prototyping effort, factors like team size and our availability as graduate students were major obstacles to fully apply the XP methodology.展开更多
The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-ME...The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.展开更多
基金The National Public Benefit Research Foundation of China (No. 201111013-02)
文摘In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.
基金supported by the projects TR32039 and TR32047 of the Ministry of Science and Technological Development of Serbia
文摘In this paper we present a novel GPU-oriented method of creating an inherently continuous triangular mesh for tile-based rendering of regular height fields. The method is based on tiling data-independent semi-regular meshes of non-uniform structure, a technique that is quite different from other mesh tiling approaches. A complete, memory efficient set of mesh patterns is created by an off-line procedure and stored into the graphics adapter's memory at runtime. At rendering time, for each tile, one of the precomputed mesh patterns is selected for rendering. The selected mesh pattern fits the required level of details of the tile and ensures seamless connection with other adjacent mesh patterns, like in a game of dominoes. The scalability potential of the proposed method is demonstrated through quadtree hierarchical grouping of tiles. The efficiency is verified by experimental results on height fields for terrain representation, where the method achieves high frame rates and sustained triangle throughput on high resolution viewports with sub-pixel error tolerance. Frame rate sensitivity to real-time modifications of the height field is measured, and it is shown that the method is very tolerant and consequently well tailored for applications dealing with rapidly changeable phenomena represented by height fields.
文摘The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability for businesses to quickly respond to new market opportunities due to changing requirements. As a response, the software development community developed the Agile Methodologies (e.g., extreme Programming, Scrum) which were also adopted by the Embedded System community. However, failures and bad experiences in applying Agile Methodologies to the development of embedded systems have not been reported in the literature. Therefore, this paper contributes a detailed account of our first-time experiences adopting an agile approach in the prototype development of a wireless environment data acquisition system in an academic environment. We successfully applied a subset of the extreme Programming (XP) methodology to our software development using the Python programming language, an experience that demonstrated its benefits in shaping the design of the software and also increasing productivity. We used an incremental development approach for the hardware components and adopted a “cumulative testing” approach. For the overall development process management, however, we concluded that the Promise/Commitment-Based Project Management (PB-PM/CBPM) was better suited. We discovered that software and hardware components of embedded systems are best developed in parallel or near-parallel. We learned that software components that pass automated tests may not survive in the tests against the hardware. Throughout this rapid prototyping effort, factors like team size and our availability as graduate students were major obstacles to fully apply the XP methodology.
基金supported by Natinoal Basic Research Program of China (973 Program, Grant No. 2011CB706805)National Natural Science Foundation of China (Grant No. 50875204)
文摘The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.