Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexami...AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not ...A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.展开更多
In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem wi...In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.展开更多
An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map nav...An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.展开更多
According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the...According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.展开更多
The coordinated route planning problem for multiple unmanned air vehicles (UAVs), a cooperative optimization problem, also a non-cooperative game, is addressed in the framework of game theory, A Nash equilibrium bas...The coordinated route planning problem for multiple unmanned air vehicles (UAVs), a cooperative optimization problem, also a non-cooperative game, is addressed in the framework of game theory, A Nash equilibrium based route planner is proposed. The rational is that the structure of UAV subteam usually provides some inherent and implicit preference information, which help to find the optimum coordinated routes and the optimum combination of the various objective functions. The route planner combines the concepts of evolutionary computation with problem-specific chromosome structures and evolutionary operators and handles different kinds of mission constraints in hierarchical style. Cooperation and competition among UAVs are reflected by the definition of fitness function. Simulations validate the feasibility and superiority of the game-theoretic coordinated routes planner.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
With the rapid development of the global economy, maritime transportation has become much more convenient due to large capacities and low freight. However, this means the sea lanes are becoming more and more crowded,l...With the rapid development of the global economy, maritime transportation has become much more convenient due to large capacities and low freight. However, this means the sea lanes are becoming more and more crowded,leading to high probabilities of marine accidents in complex maritime environments. According to relevant historical statistics, a large number of accidents have happened in water areas that lack high precision navigation data, which can be utilized to enhance navigation safety. The purpose of this work was to carry out ship route planning automatically, by mining historical big automatic identification system(AIS) data. It is well-known that experiential navigation information hidden in maritime big data could be automatically extracted using advanced data mining techniques;assisting in the generation of safe and reliable ship planning routes for complex maritime environments. In this paper, a novel method is proposed to construct a big data-driven framework for generating ship planning routes automatically, under varying navigation conditions. The method performs density-based spatial clustering of applications with noise first on a large number of ship trajectories to form different trajectory vector clusters. Then, it iteratively calculates its centerline in the trajectory vector cluster, and constructs the waterway network from the node-arc topology relationship among these centerlines. The generation of shipping route could be based on the waterway network and conducted by rasterizing the marine environment risks for the sea area not covered by the waterway network. Numerous experiments have been conducted on different AIS data sets in different water areas, and the experimental results have demonstrated the effectiveness of the framework of the ship route planning proposed in this paper.展开更多
Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge c...Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge computing are increasing rapidly,it becomes critical to efficiently orchestrate the communication and computation resources on edge clouds.Existing methods usually perform resource allocation in a fairly effective but still reactive manner,which is subject to the capacity of nearby edge clouds.To deal with the contradiction between the spatiotemporally varying demands for edge computing and the fixed edge cloud capacity,we proactively balance the edge computing demands across edge clouds by appropriate route planning.In this paper,route planning and resource allocation are jointly optimized to enhance intelligent driving.We propose a multi-scale decentralized optimization method to deal with the curse of dimensionality.In large-scale optimization,backpressure algorithm is used to conduct route planning and load balancing across edge clouds.In small-scale optimization,game-theoretic multi-agent learning is exploited to perform regional resource allocation.The experimental results show that the proposed algorithm outperforms the baseline algorithms which optimize route planning and resource allocation separately.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to div...In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.展开更多
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict...A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.展开更多
With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G ...With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.展开更多
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
In order to increase the aircraft's survival in the flight mission, it is necessary to carry out flight mission planning, which includes TF/TA2( terrain following/terrain avoidance/threat avoidance). An approach to...In order to increase the aircraft's survival in the flight mission, it is necessary to carry out flight mission planning, which includes TF/TA2( terrain following/terrain avoidance/threat avoidance). An approach to 3D-route planning based on A * heuristic search algorithm was selected to determine the routes of fiber optic guidance missile' s cruise segment. The cost function was discussed, which was mainly related to the physical obstacle, threat exposure, and aircraft performance characteristics. The digital map techniques were presented, which included setting "no-go" area according to fiber's safety requirement. The optimal or the sub-optimal route was obtained, while the cost function constraints were satisfied and the stored terrain obtained from a real terrain was digitized. The algorithm is validated through simulation and can fulfill the route planning task which focuses on the cruise segment of fiber optic guidance missile.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.展开更多
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
基金This work was partly supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub)(No.RS-2022-00155966,Artificial Intelligence Convergence Innovation Human Resources Development(Ewha University)).
文摘AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
文摘A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.
基金supported by the National Natural Science Foundation of China(No.61903036)。
文摘In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.
基金the National Key Research and Development Program of China (2018YFB0105000)the National Natural Science Foundation of China (61773234 and U1864203)+2 种基金the Project of Tsinghua University and Toyota Joint Research Center for AI Technology of Automated Vehicle (TT2018-02)the International Science and Technology Cooperation Program of China (2016YFE0102200)the software developed in the Beijing Municipal Science and Technology Program (D171100005117001 and Z181100005918001).
文摘An increasing number of drivers are relying on digital map navigation systems in vehicles or mobile phones to select optimal driving routes in order to save time and improve safety. In the near future, digital map navigation systems are expected to play more important roles in transportation systems. In order to extend current navigation systems to more applications, two fundamental problems must be resolved: the lane-level map model and lane-level route planning. This study proposes solutions to both problems. The current limitation of the lane-level map model is not its accuracy but its flexibility;this study proposes a novel seven-layer map structure, called as Tsinghua map model, which is able to support autonomous driving in a flexible and efficient way. For lane-level route planning, we propose a hierarchical route-searching algorithm to accelerate the planning process, even in the presence of complicated lane networks. In addition, we model the travel costs allocated for lane-level road networks by analyzing vehicle maneuvers in traversing lanes, changing lanes, and turning at intersections. Tests were performed on both a grid network and a real lane-level road network to demonstrate the validity and efficiency of the proposed algorithm.
基金supported by the Aeronautical Science Foundation of China (20085584010)
文摘According to the characteristic of cruise missiles,navigation point setting is simplified,and the principle of route planning for saturation attack and a concept of reference route are put forward.With the help of the shortest-tangent idea in route-planning and the algorithm of back reasoning from targets,a reference route algorithm is built on the shortest range and threat avoidance.Then a route-flight-time algorithm is built on navigation points.Based on the conditions of multi-direction saturation attack,a route planning algorithm of multi-direction saturation attack is built on reference route,route-flight-time,and impact azimuth.Simulation results show that the algorithm can realize missiles fired in a salvo launch reaching the target simultaneously from different directions while avoiding threat.
文摘The coordinated route planning problem for multiple unmanned air vehicles (UAVs), a cooperative optimization problem, also a non-cooperative game, is addressed in the framework of game theory, A Nash equilibrium based route planner is proposed. The rational is that the structure of UAV subteam usually provides some inherent and implicit preference information, which help to find the optimum coordinated routes and the optimum combination of the various objective functions. The route planner combines the concepts of evolutionary computation with problem-specific chromosome structures and evolutionary operators and handles different kinds of mission constraints in hierarchical style. Cooperation and competition among UAVs are reflected by the definition of fitness function. Simulations validate the feasibility and superiority of the game-theoretic coordinated routes planner.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
文摘With the rapid development of the global economy, maritime transportation has become much more convenient due to large capacities and low freight. However, this means the sea lanes are becoming more and more crowded,leading to high probabilities of marine accidents in complex maritime environments. According to relevant historical statistics, a large number of accidents have happened in water areas that lack high precision navigation data, which can be utilized to enhance navigation safety. The purpose of this work was to carry out ship route planning automatically, by mining historical big automatic identification system(AIS) data. It is well-known that experiential navigation information hidden in maritime big data could be automatically extracted using advanced data mining techniques;assisting in the generation of safe and reliable ship planning routes for complex maritime environments. In this paper, a novel method is proposed to construct a big data-driven framework for generating ship planning routes automatically, under varying navigation conditions. The method performs density-based spatial clustering of applications with noise first on a large number of ship trajectories to form different trajectory vector clusters. Then, it iteratively calculates its centerline in the trajectory vector cluster, and constructs the waterway network from the node-arc topology relationship among these centerlines. The generation of shipping route could be based on the waterway network and conducted by rasterizing the marine environment risks for the sea area not covered by the waterway network. Numerous experiments have been conducted on different AIS data sets in different water areas, and the experimental results have demonstrated the effectiveness of the framework of the ship route planning proposed in this paper.
基金supported in part by the Natural Science Foundation of China under Grant 61902035 and Grant 61876023in part by the Natural Science Foundation of Shandong Province of China under Grant ZR2020LZH005in part by China Postdoctoral Science Foundation under Grant 2019M660565.
文摘Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge computing are increasing rapidly,it becomes critical to efficiently orchestrate the communication and computation resources on edge clouds.Existing methods usually perform resource allocation in a fairly effective but still reactive manner,which is subject to the capacity of nearby edge clouds.To deal with the contradiction between the spatiotemporally varying demands for edge computing and the fixed edge cloud capacity,we proactively balance the edge computing demands across edge clouds by appropriate route planning.In this paper,route planning and resource allocation are jointly optimized to enhance intelligent driving.We propose a multi-scale decentralized optimization method to deal with the curse of dimensionality.In large-scale optimization,backpressure algorithm is used to conduct route planning and load balancing across edge clouds.In small-scale optimization,game-theoretic multi-agent learning is exploited to perform regional resource allocation.The experimental results show that the proposed algorithm outperforms the baseline algorithms which optimize route planning and resource allocation separately.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金Supported by the National Natural Science Foundation of China(91016004)
文摘In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.
文摘A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
文摘With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.
基金Sponsored by the Ministerial Level Advanced Research Foundation(51401050105BQ01)
文摘In order to increase the aircraft's survival in the flight mission, it is necessary to carry out flight mission planning, which includes TF/TA2( terrain following/terrain avoidance/threat avoidance). An approach to 3D-route planning based on A * heuristic search algorithm was selected to determine the routes of fiber optic guidance missile' s cruise segment. The cost function was discussed, which was mainly related to the physical obstacle, threat exposure, and aircraft performance characteristics. The digital map techniques were presented, which included setting "no-go" area according to fiber's safety requirement. The optimal or the sub-optimal route was obtained, while the cost function constraints were satisfied and the stored terrain obtained from a real terrain was digitized. The algorithm is validated through simulation and can fulfill the route planning task which focuses on the cruise segment of fiber optic guidance missile.
基金Foundation of the Robotics Laboratory, Chinese Academy of Sciences (No: RL200002)
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.