One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. Th...One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. The recent trend in operating system development is adopting microkernel architecture which holds such advantages as microminiaturization, modularity, portability and extendibility. The performance of I/O subsystem is currently receiving considerable research attention. Object-orientation offers an approach to application development in which software system can be constructed by composing and refining the pre-designed plug-compatible software components.It also starts with some basic notions fairly well accepted in computer science, namely encapsulation and reuse. In this paper, a new object-oriented real-time I/O subsystem model has been designed.In this model, the traditional I/O subsystem framework is discarded and a stream mechanism based on the object-oriented concept is introduced. In addition, the I/O requests are classified according to their time emergency to obtain real-time performance. So, this model meets such satelliteperformance requirements as reliability, flexibility, portability and real-time performance.展开更多
Satellite-based Precipitation Estimates(SPEs)have gained importance due to enhanced spatial and temporal resolution,particularly in Indus basin,where raingauge network has fewer observation stations and drainage area ...Satellite-based Precipitation Estimates(SPEs)have gained importance due to enhanced spatial and temporal resolution,particularly in Indus basin,where raingauge network has fewer observation stations and drainage area is laying in many countries.Formulation of SPEs is based on indirect mechanism,therefore,assessment and correction of associated uncertainties is required.In the present study,disintegration of uncertainties associated with four prominent real time SPEs,IMERG,TMPA,CMORPH and PERSIANN has been conducted at grid level,regional scale,and summarized in terms of regions as well as whole study area basis.The bias has been disintegrated into hit,missed,false biases,and Root Mean Square Error(RMSE)into systematic and random errors.A comparison among gauge-and satellite-based precipitation estimates at annual scale,showed promising result,encouraging use of real time SPEs in the study area.On grid basis,at daily scale,from box plots,the median values of total bias(-0.5 to 0.5 mm)of the used SPEs were also encouraging although some under/over estimations were noted in terms of hit bias(-0.15 to 0.05 mm/day).Relatively higher values of missed(0.3 to 0.5 mm/day)and false(0.5 to 0.7 mm/day)biases were observed.The detected average daily RMSE,systematic errors,and random errors were also comparatively higher.Regional-scale spatial distribution of uncertainties revealed lower values of uncertainties in plain areas,depicting the better performance of satellite-based products in these areas.However,in areas of high altitude(>4000 m),due to complex topography and climatic conditions(orographic precipitation and glaciated peaks)higher values of biases and errors were observed.Topographic barriers and point scale gauge data could also be a cause of poor performance of SPEs in these areas,where precipitation is more on ridges and less in valleys where gauge stations are usually located.Precipitation system’s size and intensity can also be a reason of higher biases,because Microwave Imager underestimate precipitation in small systems(<200 km^(2))and overestimate in large systems(>2000 km^(2)).At present,use of bias correction techniques at daily time scale is compulsory to utilize real time SPEs in estimation of floods in the study area.Inter comparison of satellite products indicated that IMERG gave better results than the others with the lowest values of systematic errors,missed and false biases.展开更多
One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance....One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance. The recent trend in operating system development is adopting microkernel architecture that holds such advantages as microminiaturization, modularity, portability and extendibility. IPC is the key of microkernel design. Message-based IPC mechanism is generally used in existing microkernel Operating system. It is of consistency, safety and reliability.However, it can not provide efficient support for real-time applications in satellite systems and it only applies to loose coupling multi-processor architecture. In this paper, an improvement solution for existing message-based IPC is proposed at first to obtain real-time performance. Then a new IPC mechanism is designed. It particulary applies to shared memory tight coupling multi-processor architecture.展开更多
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con...The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).展开更多
FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly impr...FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock lo...In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock loop(OPLL).Based on the scheme,a real-time sensitivity of-49 dBm is achieved at 5 Gbps QPSK.Because DAC is not needed at the transmitter,as well as OPLL at the receiver,this reduces the system cost.Furthermore,the least required Rx ADC bit-width is also discussed.Through theoretical analysis and experimental results,our cost-effective transceiver satisfies the scenario and could be a promising component for future application.展开更多
Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system...Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system is proposed, which combines both characteristics of satellite common-view and two-way satellite-ground time transfer. By satellite-ground two-way pseudo-range differencing and two stations common-view differencing, this TWCV method can completely eliminate the influence of common errors, such as satellite clock offset, ephemeris errors, troposphere delay and station coordinates errors. At the same time, ionosphere delay related to signal frequency is also weakened significantly. So the precision of time transfer is improved much more greatly than before. In this paper, the basic principle is introduced in detail, the effect of major errors is analyzed and the practical calculation model in the Earth-fixed coordinate system for this new method is provided. Finally, experiment analysis is conducted with actual Compass observing data. The results show that the deviation and the stability of the satellite dual channel can be better than 0.1 ns, and the accuracy of the two-way common-view satellite time transfer can achieve 0.4 ns. All these results have verified the correctness of this TWCV method and model. In addition, we compare this TWCV satellite time transfer with the independent C-band TWSTFT(Two-Way Satellite Time and Frequency Transfer). It shows that the result of the TWCV satellite time transfer is in accordance with the C-band TWSTFT result, which further suggests that the TWCV method is a remote high precision time transfer technique. The research results in this paper are very important references for the development and application of Compass satellite navigation system.展开更多
Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled po...Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.展开更多
The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centi...The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centimeter-level positioning with a stand-alone receiver in real-time.Although the products are available with high accuracy almost all the time,they may occasionally suffer from unexpected significant biases,which consequently degrades the positioning perfor-mance.Therefore,quality monitoring at the system-level has become more and more crucial for providing a reliable GNSS service.In this paper,we propose a method for the monitoring of realtime satellite orbit and clock products using a monitoring station network based on the Quality Control(QC)theory.The satellites with possible biases are first detected based on the outliers identified by Precise Point Positioning(PPP)in the monitoring station network.Then,the corresponding orbit and clock parameters with temporal constraints are introduced and esti-mated through the sequential Least Square(LS)estimator and the corresponding Instantaneous User Range Errors(IUREs)can be determined.A quality indicator is calculated based on the IUREs in the monitoring network and compared with a pre-defined threshold.The quality monitoring method is experimentally evaluated by monitoring the real-time orbit and clock products generated by GeoForschungsZentrum(GFZ),Potsdam.The results confirm that the problematic satellites can be detected accurately and effectively with missed detection rate 4×10^(-6) and false alarm rate 1:2×10^(-5).Considering the quality alarms,the PPP results in terms of RMS of positioning differences with respect to the International GNSS Service(IGS)weekly solution in the north,east and up directions can be improved by 12%,10%and 27%,respectively.展开更多
In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigat...In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigation satellite system(Galileo)have provided real-time satellite clock correction,which is updated at a high-frequency.However,the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters.To address this issue,an improved Real-Time Service(RTS)method is developed using an extrapolation algorithm and a linear model.The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS.With this approach,the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns.Moreover,when these model coefficients are transmitted and updated at the intervals of 1,2,5,and 10 min,the corresponding PPP can converge at the centimeter-level.It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission,as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters.展开更多
This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)...This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety.展开更多
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algori...Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.展开更多
The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based o...The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used.展开更多
Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambig...Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambiguity estimation,which can be applied for both overlapping and non-overlapping signal frequencies.The single difference ambiguities of all satellites and Differential Inter-System Biases(DISB)are first estimated,and the intra-system double difference ambiguities,which have integer characteristics,are then fixed.After the ambiguities are successfully fixed,high-precision coordinates and DISB can be obtained with a constructed transformation matrix.The model effectively avoids the DISB parameter filtering discontinuity caused by the reference satellite transformation and the low precision of the reference satellite single difference ambiguity calculated with the code.A zero-baseline using multiple types of receivers is selected to verify the stability of the estimated DISB.Three baselines with different lengths are selected to assess the positioning performance of the model.The ionospheric-fixed and ionospheric-float models are used for short and medium-long baselines,respectively.The results show that the Differential Inter-System Code Biases(DISCB)and Differential Inter-System Phase Biases(DISPB)have good stability regardless of the receivers type and the signal frequency used and can be calibrated to enhance the strength of the positioning model.The positioning results with three baselines of different lengths show that the proposed inter-system double-difference model can improve the positioning accuracy by 6–22%compared with the intra-system double-difference model which selects the reference satellite independently for each system.The Time to First Fix(TTFF)of the two medium-long baselines is reduced by 30%and 29%,respectively.展开更多
The BeiDou global navigation satellite system(BDS-3)constellation deployment has been completed on June 23,2020,with a full constellation comprising 30 satellites.In this study,we present the performance assessment of...The BeiDou global navigation satellite system(BDS-3)constellation deployment has been completed on June 23,2020,with a full constellation comprising 30 satellites.In this study,we present the performance assessment of single-epoch Real-Time Kinematic(RTK)positioning with tightly combined BeiDou regional navigation satellite system(BDS-2)and BDS-3.We first investigate whether code and phase Differential Inter-System Biases(DISBs)exist between the legacy B1I/B3I signals of BDS-3/BDS-2.It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints.These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning.Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3.The performance is evaluated through ambiguity resolution success rate,ambiguity dilution of precision,as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan.Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions.Moreover,the RTK performance is much improved with tightly combined BDS-3/BDS-2,particularly in challenging or harsh conditions.The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9%even with an elevation cut-off angle of 40°,indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia-Pacific region.Meanwhile,the three-dimensional(East/North/Up)positioning accuracy of BDS-3 only solution(0.52 cm/0.39 cm/2.14 cm)in the kinematic test is significantly better than that of the BDS-2 only solution(0.85 cm/1.02 cm/3.01 cm)due to the better geometry of the current BDS-3 constellation.The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm,0.22 cm,and 1.80 cm,respectively.展开更多
文摘One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. The recent trend in operating system development is adopting microkernel architecture which holds such advantages as microminiaturization, modularity, portability and extendibility. The performance of I/O subsystem is currently receiving considerable research attention. Object-orientation offers an approach to application development in which software system can be constructed by composing and refining the pre-designed plug-compatible software components.It also starts with some basic notions fairly well accepted in computer science, namely encapsulation and reuse. In this paper, a new object-oriented real-time I/O subsystem model has been designed.In this model, the traditional I/O subsystem framework is discarded and a stream mechanism based on the object-oriented concept is introduced. In addition, the I/O requests are classified according to their time emergency to obtain real-time performance. So, this model meets such satelliteperformance requirements as reliability, flexibility, portability and real-time performance.
文摘Satellite-based Precipitation Estimates(SPEs)have gained importance due to enhanced spatial and temporal resolution,particularly in Indus basin,where raingauge network has fewer observation stations and drainage area is laying in many countries.Formulation of SPEs is based on indirect mechanism,therefore,assessment and correction of associated uncertainties is required.In the present study,disintegration of uncertainties associated with four prominent real time SPEs,IMERG,TMPA,CMORPH and PERSIANN has been conducted at grid level,regional scale,and summarized in terms of regions as well as whole study area basis.The bias has been disintegrated into hit,missed,false biases,and Root Mean Square Error(RMSE)into systematic and random errors.A comparison among gauge-and satellite-based precipitation estimates at annual scale,showed promising result,encouraging use of real time SPEs in the study area.On grid basis,at daily scale,from box plots,the median values of total bias(-0.5 to 0.5 mm)of the used SPEs were also encouraging although some under/over estimations were noted in terms of hit bias(-0.15 to 0.05 mm/day).Relatively higher values of missed(0.3 to 0.5 mm/day)and false(0.5 to 0.7 mm/day)biases were observed.The detected average daily RMSE,systematic errors,and random errors were also comparatively higher.Regional-scale spatial distribution of uncertainties revealed lower values of uncertainties in plain areas,depicting the better performance of satellite-based products in these areas.However,in areas of high altitude(>4000 m),due to complex topography and climatic conditions(orographic precipitation and glaciated peaks)higher values of biases and errors were observed.Topographic barriers and point scale gauge data could also be a cause of poor performance of SPEs in these areas,where precipitation is more on ridges and less in valleys where gauge stations are usually located.Precipitation system’s size and intensity can also be a reason of higher biases,because Microwave Imager underestimate precipitation in small systems(<200 km^(2))and overestimate in large systems(>2000 km^(2)).At present,use of bias correction techniques at daily time scale is compulsory to utilize real time SPEs in estimation of floods in the study area.Inter comparison of satellite products indicated that IMERG gave better results than the others with the lowest values of systematic errors,missed and false biases.
文摘One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance. The recent trend in operating system development is adopting microkernel architecture that holds such advantages as microminiaturization, modularity, portability and extendibility. IPC is the key of microkernel design. Message-based IPC mechanism is generally used in existing microkernel Operating system. It is of consistency, safety and reliability.However, it can not provide efficient support for real-time applications in satellite systems and it only applies to loose coupling multi-processor architecture. In this paper, an improvement solution for existing message-based IPC is proposed at first to obtain real-time performance. Then a new IPC mechanism is designed. It particulary applies to shared memory tight coupling multi-processor architecture.
基金supported by the National Natural Science Foundation of China(61401389)
文摘The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).
文摘FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB2900800)the Science and Technology Commission of Shanghai Municipality(Nos.22511100902,22511100502,20511102400,and 20ZR1420900)the 111 Project(No.D20031)。
文摘In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock loop(OPLL).Based on the scheme,a real-time sensitivity of-49 dBm is achieved at 5 Gbps QPSK.Because DAC is not needed at the transmitter,as well as OPLL at the receiver,this reduces the system cost.Furthermore,the least required Rx ADC bit-width is also discussed.Through theoretical analysis and experimental results,our cost-effective transceiver satisfies the scenario and could be a promising component for future application.
基金supported by the National Natural Science Foundation of China(Grant No.41174027)the National High-tech Research and Development Program(863 Program)(Grant No.2013AA122402)
文摘Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system is proposed, which combines both characteristics of satellite common-view and two-way satellite-ground time transfer. By satellite-ground two-way pseudo-range differencing and two stations common-view differencing, this TWCV method can completely eliminate the influence of common errors, such as satellite clock offset, ephemeris errors, troposphere delay and station coordinates errors. At the same time, ionosphere delay related to signal frequency is also weakened significantly. So the precision of time transfer is improved much more greatly than before. In this paper, the basic principle is introduced in detail, the effect of major errors is analyzed and the practical calculation model in the Earth-fixed coordinate system for this new method is provided. Finally, experiment analysis is conducted with actual Compass observing data. The results show that the deviation and the stability of the satellite dual channel can be better than 0.1 ns, and the accuracy of the two-way common-view satellite time transfer can achieve 0.4 ns. All these results have verified the correctness of this TWCV method and model. In addition, we compare this TWCV satellite time transfer with the independent C-band TWSTFT(Two-Way Satellite Time and Frequency Transfer). It shows that the result of the TWCV satellite time transfer is in accordance with the C-band TWSTFT result, which further suggests that the TWCV method is a remote high precision time transfer technique. The research results in this paper are very important references for the development and application of Compass satellite navigation system.
基金Supported by the Guizhou Provincial Science and Technology Projects([2020]2Y044)the Science and Technology Projects of China Southern Power Grid Co.Ltd.(066600KK52170074)the National Natural Science Foundation of China(61473144)。
文摘Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.
基金funded by the National Natural Science Foundation of China(42030109).
文摘The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centimeter-level positioning with a stand-alone receiver in real-time.Although the products are available with high accuracy almost all the time,they may occasionally suffer from unexpected significant biases,which consequently degrades the positioning perfor-mance.Therefore,quality monitoring at the system-level has become more and more crucial for providing a reliable GNSS service.In this paper,we propose a method for the monitoring of realtime satellite orbit and clock products using a monitoring station network based on the Quality Control(QC)theory.The satellites with possible biases are first detected based on the outliers identified by Precise Point Positioning(PPP)in the monitoring station network.Then,the corresponding orbit and clock parameters with temporal constraints are introduced and esti-mated through the sequential Least Square(LS)estimator and the corresponding Instantaneous User Range Errors(IUREs)can be determined.A quality indicator is calculated based on the IUREs in the monitoring network and compared with a pre-defined threshold.The quality monitoring method is experimentally evaluated by monitoring the real-time orbit and clock products generated by GeoForschungsZentrum(GFZ),Potsdam.The results confirm that the problematic satellites can be detected accurately and effectively with missed detection rate 4×10^(-6) and false alarm rate 1:2×10^(-5).Considering the quality alarms,the PPP results in terms of RMS of positioning differences with respect to the International GNSS Service(IGS)weekly solution in the north,east and up directions can be improved by 12%,10%and 27%,respectively.
基金This research is supported by the National Natural Science Foundation of China(NSFC)(Nos.42174019 and 41974025)the Fundamental Research Funds for the Central Universities.
文摘In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigation satellite system(Galileo)have provided real-time satellite clock correction,which is updated at a high-frequency.However,the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters.To address this issue,an improved Real-Time Service(RTS)method is developed using an extrapolation algorithm and a linear model.The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS.With this approach,the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns.Moreover,when these model coefficients are transmitted and updated at the intervals of 1,2,5,and 10 min,the corresponding PPP can converge at the centimeter-level.It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission,as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters.
基金The Government of Canada-through the Ministry of Transport and Ministry of Natural Resources-funded this research。
文摘This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety.
基金co-supported by National Natural Science Foundation of China (No. 61101075)the Pre-research Foundation (No. 9140A24040710HK0126)Fundament Research Funds for the Central Universities (YWF-11-02-176)
文摘Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.
基金the National Natural Science Foundation of China(Grant Nos.41604031 and 41774042)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20190063)+1 种基金the BDS Industrialization Project(Grant No.GFZX030302030201-2)the National Key Research Program of China Collaborative Precision Positioning Project(Grant No.2016YFB0501900).
文摘The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used.
基金This work was jointly supported by the National Key Research Program of China Collaborative Precision Positioning Project(No.2016YFB0501900)the National Natural Science Foundation of China(Grant No.41774017).
文摘Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambiguity estimation,which can be applied for both overlapping and non-overlapping signal frequencies.The single difference ambiguities of all satellites and Differential Inter-System Biases(DISB)are first estimated,and the intra-system double difference ambiguities,which have integer characteristics,are then fixed.After the ambiguities are successfully fixed,high-precision coordinates and DISB can be obtained with a constructed transformation matrix.The model effectively avoids the DISB parameter filtering discontinuity caused by the reference satellite transformation and the low precision of the reference satellite single difference ambiguity calculated with the code.A zero-baseline using multiple types of receivers is selected to verify the stability of the estimated DISB.Three baselines with different lengths are selected to assess the positioning performance of the model.The ionospheric-fixed and ionospheric-float models are used for short and medium-long baselines,respectively.The results show that the Differential Inter-System Code Biases(DISCB)and Differential Inter-System Phase Biases(DISPB)have good stability regardless of the receivers type and the signal frequency used and can be calibrated to enhance the strength of the positioning model.The positioning results with three baselines of different lengths show that the proposed inter-system double-difference model can improve the positioning accuracy by 6–22%compared with the intra-system double-difference model which selects the reference satellite independently for each system.The Time to First Fix(TTFF)of the two medium-long baselines is reduced by 30%and 29%,respectively.
基金the National Natural Science Foundation of China(Nos.41774031,41904035,91638203)Hubei Provincial Natural Science Foundation of China(No.2019CFB261)+1 种基金the National Science Fund for Distinguished Young Scholars(No.41825009)Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University(No.19-01-06).
文摘The BeiDou global navigation satellite system(BDS-3)constellation deployment has been completed on June 23,2020,with a full constellation comprising 30 satellites.In this study,we present the performance assessment of single-epoch Real-Time Kinematic(RTK)positioning with tightly combined BeiDou regional navigation satellite system(BDS-2)and BDS-3.We first investigate whether code and phase Differential Inter-System Biases(DISBs)exist between the legacy B1I/B3I signals of BDS-3/BDS-2.It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints.These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning.Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3.The performance is evaluated through ambiguity resolution success rate,ambiguity dilution of precision,as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan.Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions.Moreover,the RTK performance is much improved with tightly combined BDS-3/BDS-2,particularly in challenging or harsh conditions.The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9%even with an elevation cut-off angle of 40°,indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia-Pacific region.Meanwhile,the three-dimensional(East/North/Up)positioning accuracy of BDS-3 only solution(0.52 cm/0.39 cm/2.14 cm)in the kinematic test is significantly better than that of the BDS-2 only solution(0.85 cm/1.02 cm/3.01 cm)due to the better geometry of the current BDS-3 constellation.The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm,0.22 cm,and 1.80 cm,respectively.