期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
The Design of I/O Subsystem in Satellite Real-Time Microkernel Operating System 被引量:1
1
作者 Liu Xiaodong & Li Lianzhi (Dept. of Computer Science & Engineering, Harbin Institute of Technology, 150001, P. R. China) Qian Chunlai(Beijiing Institute of Radio Measurement, 100854, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1998年第3期77-81,共5页
One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. Th... One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. The recent trend in operating system development is adopting microkernel architecture which holds such advantages as microminiaturization, modularity, portability and extendibility. The performance of I/O subsystem is currently receiving considerable research attention. Object-orientation offers an approach to application development in which software system can be constructed by composing and refining the pre-designed plug-compatible software components.It also starts with some basic notions fairly well accepted in computer science, namely encapsulation and reuse. In this paper, a new object-oriented real-time I/O subsystem model has been designed.In this model, the traditional I/O subsystem framework is discarded and a stream mechanism based on the object-oriented concept is introduced. In addition, the I/O requests are classified according to their time emergency to obtain real-time performance. So, this model meets such satelliteperformance requirements as reliability, flexibility, portability and real-time performance. 展开更多
关键词 satellite operating system I/O subsystem OBJECT-ORIENTED real-time
下载PDF
Disintegration of uncertainties associated with real-time multi-satellite precipitation products in diverse topographic and climatic area in Pakistan
2
作者 Muhammad MASOOD Ghulam NABI +2 位作者 Muhammad BABUR Aftab Hussain AZHAR Muhammad KALEEM ULLAH 《Journal of Mountain Science》 SCIE CSCD 2021年第3期716-734,共19页
Satellite-based Precipitation Estimates(SPEs)have gained importance due to enhanced spatial and temporal resolution,particularly in Indus basin,where raingauge network has fewer observation stations and drainage area ... Satellite-based Precipitation Estimates(SPEs)have gained importance due to enhanced spatial and temporal resolution,particularly in Indus basin,where raingauge network has fewer observation stations and drainage area is laying in many countries.Formulation of SPEs is based on indirect mechanism,therefore,assessment and correction of associated uncertainties is required.In the present study,disintegration of uncertainties associated with four prominent real time SPEs,IMERG,TMPA,CMORPH and PERSIANN has been conducted at grid level,regional scale,and summarized in terms of regions as well as whole study area basis.The bias has been disintegrated into hit,missed,false biases,and Root Mean Square Error(RMSE)into systematic and random errors.A comparison among gauge-and satellite-based precipitation estimates at annual scale,showed promising result,encouraging use of real time SPEs in the study area.On grid basis,at daily scale,from box plots,the median values of total bias(-0.5 to 0.5 mm)of the used SPEs were also encouraging although some under/over estimations were noted in terms of hit bias(-0.15 to 0.05 mm/day).Relatively higher values of missed(0.3 to 0.5 mm/day)and false(0.5 to 0.7 mm/day)biases were observed.The detected average daily RMSE,systematic errors,and random errors were also comparatively higher.Regional-scale spatial distribution of uncertainties revealed lower values of uncertainties in plain areas,depicting the better performance of satellite-based products in these areas.However,in areas of high altitude(>4000 m),due to complex topography and climatic conditions(orographic precipitation and glaciated peaks)higher values of biases and errors were observed.Topographic barriers and point scale gauge data could also be a cause of poor performance of SPEs in these areas,where precipitation is more on ridges and less in valleys where gauge stations are usually located.Precipitation system’s size and intensity can also be a reason of higher biases,because Microwave Imager underestimate precipitation in small systems(<200 km^(2))and overestimate in large systems(>2000 km^(2)).At present,use of bias correction techniques at daily time scale is compulsory to utilize real time SPEs in estimation of floods in the study area.Inter comparison of satellite products indicated that IMERG gave better results than the others with the lowest values of systematic errors,missed and false biases. 展开更多
关键词 satellite precipitation real-time Error characterization IMERG Indus Basin
下载PDF
IPC Mechanisms in Satellite Real-Time Microkernel Operating System
3
作者 刘晓冬 李莲治 +1 位作者 郭福顺 朱力群 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期72-75,共4页
One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance.... One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance. The recent trend in operating system development is adopting microkernel architecture that holds such advantages as microminiaturization, modularity, portability and extendibility. IPC is the key of microkernel design. Message-based IPC mechanism is generally used in existing microkernel Operating system. It is of consistency, safety and reliability.However, it can not provide efficient support for real-time applications in satellite systems and it only applies to loose coupling multi-processor architecture. In this paper, an improvement solution for existing message-based IPC is proposed at first to obtain real-time performance. Then a new IPC mechanism is designed. It particulary applies to shared memory tight coupling multi-processor architecture. 展开更多
关键词 satellite MICROKERNEL real-time IPC MECHANISM MESSAGE
下载PDF
Application and improvement of wavelet packet de-noising in satellite transponder
4
作者 Yannian Lou Chaojie Zhang +1 位作者 Xiaojun Jin Zhonghe Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期671-679,共9页
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con... The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR). 展开更多
关键词 wavelet packet de-noising (WPD) satellite transpon-der power consumption reduction real-time de-noising.
下载PDF
FY-4 Meteorological Satellite 被引量:1
5
作者 DONG Yaohai CHEN Xiaojie +4 位作者 CHEN Qiang LYU Wang SHEN Junfeng CHE Lamei JIANG Feng 《Aerospace China》 2017年第2期31-39,共9页
FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly impr... FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4. 展开更多
关键词 FY-4 GEO meteorological satellite three-axis stabilization quantitative remote sensing vertical highspectrum sounding real-time on-board image navigation and registration
下载PDF
A New Generation of Intelligent Mapping and Remote Sensing Scientific Test Satellite Luojia-301
6
作者 Deren LI Mi WANG Fang YANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期11-20,共10页
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ... With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network. 展开更多
关键词 real-time intelligent services collaborative application on-orbit processing mapping and remote sensing information Luojia-301 satellite
下载PDF
Simple real-time high-sensitivity heterodyne coherent optical transceiver at intraplane satellite communication
7
作者 曲元哲 张倩武 +7 位作者 王演祎 陈彦昊 龚乐为 刘紫玥 张俊杰 李迎春 陈健 宋英雄 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第3期7-13,共7页
In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock lo... In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock loop(OPLL).Based on the scheme,a real-time sensitivity of-49 dBm is achieved at 5 Gbps QPSK.Because DAC is not needed at the transmitter,as well as OPLL at the receiver,this reduces the system cost.Furthermore,the least required Rx ADC bit-width is also discussed.Through theoretical analysis and experimental results,our cost-effective transceiver satisfies the scenario and could be a promising component for future application. 展开更多
关键词 real-time coherent transceiver HETERODYNING intraplane satellite optical communication
原文传递
The method and experiment analysis of two-way common-view satellite time transfer for compass system 被引量:2
8
作者 LIU Li TANG GuiFen +3 位作者 HAN ChunHao SHI Xin GUO Rui ZHU LingFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第8期95-101,共7页
Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system... Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system is proposed, which combines both characteristics of satellite common-view and two-way satellite-ground time transfer. By satellite-ground two-way pseudo-range differencing and two stations common-view differencing, this TWCV method can completely eliminate the influence of common errors, such as satellite clock offset, ephemeris errors, troposphere delay and station coordinates errors. At the same time, ionosphere delay related to signal frequency is also weakened significantly. So the precision of time transfer is improved much more greatly than before. In this paper, the basic principle is introduced in detail, the effect of major errors is analyzed and the practical calculation model in the Earth-fixed coordinate system for this new method is provided. Finally, experiment analysis is conducted with actual Compass observing data. The results show that the deviation and the stability of the satellite dual channel can be better than 0.1 ns, and the accuracy of the two-way common-view satellite time transfer can achieve 0.4 ns. All these results have verified the correctness of this TWCV method and model. In addition, we compare this TWCV satellite time transfer with the independent C-band TWSTFT(Two-Way Satellite Time and Frequency Transfer). It shows that the result of the TWCV satellite time transfer is in accordance with the C-band TWSTFT result, which further suggests that the TWCV method is a remote high precision time transfer technique. The research results in this paper are very important references for the development and application of Compass satellite navigation system. 展开更多
关键词 satellite navigation PSEUDO-RANGE time transfer clock offset two-way common-view (TWCV)
原文传递
RRVPE:A Robust and Real-Time Visual-Inertial-GNSS Pose Estimator for Aerial Robot Navigation 被引量:3
9
作者 ZHANG Chi YANG Zhong +5 位作者 XU Hao LIAO Luwei ZHU Tang LI Guotao YANG Xin ZHANG Qiuyan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第1期20-28,共9页
Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled po... Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators. 展开更多
关键词 computer vision visual-inertial-GNSS(Global Navigation satellite System)pose estimation real-time autonomous navigation sensor fusion robotics
原文传递
Quality monitoring of real-time GNSS precise positioning service system 被引量:1
10
作者 Run Ji Xinyuan Jiang +3 位作者 Xinghan Chen Huizhong Zhu Maorong Ge Frank Neitzel 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第1期1-15,共15页
The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centi... The Real-Time Global Navigation Satellite System(GNSS)Precise Positioning Service(RTPPS)is recognized as the most promising system by providing precise satellite orbit and clock correc-tions for users to achieve centimeter-level positioning with a stand-alone receiver in real-time.Although the products are available with high accuracy almost all the time,they may occasionally suffer from unexpected significant biases,which consequently degrades the positioning perfor-mance.Therefore,quality monitoring at the system-level has become more and more crucial for providing a reliable GNSS service.In this paper,we propose a method for the monitoring of realtime satellite orbit and clock products using a monitoring station network based on the Quality Control(QC)theory.The satellites with possible biases are first detected based on the outliers identified by Precise Point Positioning(PPP)in the monitoring station network.Then,the corresponding orbit and clock parameters with temporal constraints are introduced and esti-mated through the sequential Least Square(LS)estimator and the corresponding Instantaneous User Range Errors(IUREs)can be determined.A quality indicator is calculated based on the IUREs in the monitoring network and compared with a pre-defined threshold.The quality monitoring method is experimentally evaluated by monitoring the real-time orbit and clock products generated by GeoForschungsZentrum(GFZ),Potsdam.The results confirm that the problematic satellites can be detected accurately and effectively with missed detection rate 4×10^(-6) and false alarm rate 1:2×10^(-5).Considering the quality alarms,the PPP results in terms of RMS of positioning differences with respect to the International GNSS Service(IGS)weekly solution in the north,east and up directions can be improved by 12%,10%and 27%,respectively. 展开更多
关键词 Global Navigation satellite System(GNSS) real-time precise positioning quality monitoring precise point positioning satellite product bias
原文传递
Real‑time service performances of BDS‑3 and Galileo constellations with a linear satellite clock correction models 被引量:1
11
作者 Haojun Li Danzeng Luojie Huimin Ding 《Satellite Navigation》 SCIE EI CSCD 2023年第3期72-81,共10页
In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigat... In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigation satellite system(Galileo)have provided real-time satellite clock correction,which is updated at a high-frequency.However,the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters.To address this issue,an improved Real-Time Service(RTS)method is developed using an extrapolation algorithm and a linear model.The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS.With this approach,the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns.Moreover,when these model coefficients are transmitted and updated at the intervals of 1,2,5,and 10 min,the corresponding PPP can converge at the centimeter-level.It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission,as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters. 展开更多
关键词 Precise point positioning satellite clock correction real-time service
原文传递
Field testing innovative differential geospatial and photogrammetric monitoring technologiesin mountainous terrain near Ashcroft,British Columbia,Canada
12
作者 David HUNTLEY Peter BOBROWSKY +3 位作者 Roger MACLEOD Robert COCKING Jamel JOSEPH Drew ROTHERAM-CLARKE 《Journal of Mountain Science》 SCIE CSCD 2021年第1期1-20,共20页
This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)... This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety. 展开更多
关键词 LANDSLIDE Change detection monitoring Global Navigation satellite System real-time Kinematic System GeocubeTM Bathymetric Survey Unmanned Aerial Vehicle Interferometric Synthetic Aperture Radar
下载PDF
GNSS异步RTK定位效果分析 被引量:1
13
作者 谢宝飞 刘晖 +2 位作者 舒宝 杨志鑫 王一飞 《测绘地理信息》 2020年第5期24-28,42,共6页
分析了GNSS(global navigation satellite system)卫星钟差在通信延迟内变化的量级,同时对比分析了不同系统异步RTK(real-time kinematic)定位精度。实验结果表明,与传统RTK模型相比,在考虑通信延迟内钟差变化的影响时,BDS/Galileo/GPS... 分析了GNSS(global navigation satellite system)卫星钟差在通信延迟内变化的量级,同时对比分析了不同系统异步RTK(real-time kinematic)定位精度。实验结果表明,与传统RTK模型相比,在考虑通信延迟内钟差变化的影响时,BDS/Galileo/GPS的RTK定位精度明显提高,GLONASS在通信延迟较低时无明显变化。其中,对于同样的通信延迟,BDS/Galileo的异步RTK定位精度明显优于GPS/GLONASS。 展开更多
关键词 异步差分 同步差分 RTK(real-time kinematic) 卫星钟差 通信延迟 GNSS(global navigation satellite system)
原文传递
Receiver-channel based adaptive blind equalization approach for GPS dynamic multipath mitigation 被引量:6
14
作者 Zhao Yun Xue Xiaonan Zhang Tingfei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期378-384,共7页
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algori... Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase. 展开更多
关键词 Blind equalization Correlation distortion Dynamic multipath mitigation real-time recursive least square algorithm satellite navigation
原文传递
Initial assessment of single-and dual-frequency BDS-3 RTK positioning 被引量:10
15
作者 Yunbin Yuan Xiaolong Mi Baocheng Zhang 《Satellite Navigation》 2020年第1期338-344,共7页
The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based o... The BeiDou navigation satellite system with global coverage(BDS-3)has been fully operational since July 2020 and provides comprehensive services to global users.BDS-3 transmits several new navigational signals based on the signals inherited from the BeiDou navigation satellite(regional)system(BDS-2).Previous studies focused on the positioning performance of BDS-2 plus BDS-3 and that of combining BDS-3 and other Global Navigation Satellite Systems(GNSSs),but there was no in-depth discussion on the positioning performance of the BDS-3-only.In this contribution,the BDS-3-only Real-Time Kinematic(RTK)positioning is analysed using the data collected in zero and short baselines in Wuhan,China.The RTK model based on Single-Differenced is first presented,and the BDS-3-only RTK positioning in cases of single and dual-frequencies is evaluated with the model in terms of the empirical integer ambiguity resolution success rates and positioning accuracy.Our numerical tests suggest two major findings.First,the positioning performance for the B1I and B3I retained from BDS-2 and the new frequency B1C is comparable,while that for the new frequency B2a is poorer.Second,the positioning performance of the new frequency combination of the B1C+B2a is not as good as that of the B1C only,owing to the unrealistic stochastic model used. 展开更多
关键词 BDS-3 Global navigation satellite system real-time kinematic Integer ambiguity resolution Stochastic model
原文传递
A new inter‑system double‑difference RTK model applicable to both overlapping and non‑overlapping signal frequencies 被引量:1
16
作者 Wenhao Zhao Genyou Liu +3 位作者 Ming Gao Bo Zhang Shengjun Hu Minghui Lyu 《Satellite Navigation》 SCIE EI CSCD 2023年第3期82-91,共10页
Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambig... Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambiguity estimation,which can be applied for both overlapping and non-overlapping signal frequencies.The single difference ambiguities of all satellites and Differential Inter-System Biases(DISB)are first estimated,and the intra-system double difference ambiguities,which have integer characteristics,are then fixed.After the ambiguities are successfully fixed,high-precision coordinates and DISB can be obtained with a constructed transformation matrix.The model effectively avoids the DISB parameter filtering discontinuity caused by the reference satellite transformation and the low precision of the reference satellite single difference ambiguity calculated with the code.A zero-baseline using multiple types of receivers is selected to verify the stability of the estimated DISB.Three baselines with different lengths are selected to assess the positioning performance of the model.The ionospheric-fixed and ionospheric-float models are used for short and medium-long baselines,respectively.The results show that the Differential Inter-System Code Biases(DISCB)and Differential Inter-System Phase Biases(DISPB)have good stability regardless of the receivers type and the signal frequency used and can be calibrated to enhance the strength of the positioning model.The positioning results with three baselines of different lengths show that the proposed inter-system double-difference model can improve the positioning accuracy by 6–22%compared with the intra-system double-difference model which selects the reference satellite independently for each system.The Time to First Fix(TTFF)of the two medium-long baselines is reduced by 30%and 29%,respectively. 展开更多
关键词 Global navigation satellite systems real-time Inter-system biases Ambiguity resolution Medium-long baselines
原文传递
Single-epoch RTK performance assessment of tightly combined BDS-2 and newly complete BDS-3 被引量:4
17
作者 Wanke Liu Mingkui Wu +3 位作者 Xiaohong Zhang Wang Wang Wei Ke Zhiqin Zhu 《Satellite Navigation》 2021年第1期71-87,共17页
The BeiDou global navigation satellite system(BDS-3)constellation deployment has been completed on June 23,2020,with a full constellation comprising 30 satellites.In this study,we present the performance assessment of... The BeiDou global navigation satellite system(BDS-3)constellation deployment has been completed on June 23,2020,with a full constellation comprising 30 satellites.In this study,we present the performance assessment of single-epoch Real-Time Kinematic(RTK)positioning with tightly combined BeiDou regional navigation satellite system(BDS-2)and BDS-3.We first investigate whether code and phase Differential Inter-System Biases(DISBs)exist between the legacy B1I/B3I signals of BDS-3/BDS-2.It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints.These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning.Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3.The performance is evaluated through ambiguity resolution success rate,ambiguity dilution of precision,as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan.Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions.Moreover,the RTK performance is much improved with tightly combined BDS-3/BDS-2,particularly in challenging or harsh conditions.The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9%even with an elevation cut-off angle of 40°,indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia-Pacific region.Meanwhile,the three-dimensional(East/North/Up)positioning accuracy of BDS-3 only solution(0.52 cm/0.39 cm/2.14 cm)in the kinematic test is significantly better than that of the BDS-2 only solution(0.85 cm/1.02 cm/3.01 cm)due to the better geometry of the current BDS-3 constellation.The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm,0.22 cm,and 1.80 cm,respectively. 展开更多
关键词 BeiDou global navigation satellite system BDS-2 real-time kinematic Differential inter-system bias Ambiguity resolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部