This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was...This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.展开更多
Traditional agriculture is facing several challenges worldwide such as increased population growth,rapid forestry and urbanization,resource scarcity,climate change,environmental pollution,competition among different m...Traditional agriculture is facing several challenges worldwide such as increased population growth,rapid forestry and urbanization,resource scarcity,climate change,environmental pollution,competition among different markets.Hence,farmers need to improve productivity in order to maintain the output level.This study attempted to evaluate the benefits of using Real-Time Kinematic(RTK)positioning in precision agriculture through a series of real measurements carried out when farming cereals.All farming management actions involved in the cereal crop process(raise fallow,plow,sow,fertilize,mow,and harvest)have been done using an automatic guidance system that has reduced costs.A reduction of 20%has been quantified in the fuel,the amount of fertilizer,the labor costs and the hours of work.Consequently,the environmental impact has been also reduced.An inexpensive system consisting of a reference base station near the field and a mobile unit mounted on the test vehicle has been installed in order to increase the benefits in cereal crops.Global Navigation Satellite System(GNSS)systems including Global Positioning System(GPS),GLONASS,Galileo and Beidou have been used in the analysis.This research serves as a practical guide to implementing a low-cost guidance system to achieve best management practice.展开更多
To obtain higher accuracy of information concerning boat motion, the use of global positioning system (GPS) real-time kinematic (RTK) technology was investigated. Through RTK technology, a measurement precision of th...To obtain higher accuracy of information concerning boat motion, the use of global positioning system (GPS) real-time kinematic (RTK) technology was investigated. Through RTK technology, a measurement precision of the ±1 cm range can be achieved. The research equipment included a GPS receiver and a personal digital assistant as a data control and processing unit. Real-time GPS data was captured and processed to acquire various parameters, including the boat track, velocity curve, stroke rate, and stroke distance. Using this data, the quantitative information related to rowing training can be achieved. The results are helpful for analyzing the biomechanical parameters of rowing techniques and for evaluating training efficiency.展开更多
Starting from 2016,the raw Global Navigation Satellite System(GNSS)measurements can be extracted from the Android Nougat(or later)operating systems.Since then,GNSS smartphone positioning has been given much attention....Starting from 2016,the raw Global Navigation Satellite System(GNSS)measurements can be extracted from the Android Nougat(or later)operating systems.Since then,GNSS smartphone positioning has been given much attention.A high number of related publications indicates the importance of the research in this field,as it has been doing in recent years.Due to the cost-effectiveness of the GNSS smartphones,they can be employed in a wide variety of applications such as cadastral surveys,mapping surveying applications,vehicle and pedestrian navigation and etc.However,there are still some challenges regarding the noisy smartphone GNSS observations,the environment effect and smartphone holding modes and the algorithm development part which restrict the users to achieve high-precision smartphone positioning.In this review paper,we overview the research works carried out in this field with a focus on the following aspects:first,to provide a review of fundamental work on raw smartphone observations and quality assessment of GNSS observations from major smart devices including Google Pixel 4,Google Pixel 5,Xiaomi Mi 8 and Samsung Ultra S20 in terms of their signal strengths and carrier-phase continuities,second,to describe the current state of smartphone positioning research field until most recently in 2021 and,last,to summarize major challenges and opportunities in this filed.Finally,the paper is concluded with some remarks as well as future research perspectives.展开更多
The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency ...The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.展开更多
文摘This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.
基金This work was supported by the Project of University of Alcalá(Grant No.CCG2016/EXP-055).
文摘Traditional agriculture is facing several challenges worldwide such as increased population growth,rapid forestry and urbanization,resource scarcity,climate change,environmental pollution,competition among different markets.Hence,farmers need to improve productivity in order to maintain the output level.This study attempted to evaluate the benefits of using Real-Time Kinematic(RTK)positioning in precision agriculture through a series of real measurements carried out when farming cereals.All farming management actions involved in the cereal crop process(raise fallow,plow,sow,fertilize,mow,and harvest)have been done using an automatic guidance system that has reduced costs.A reduction of 20%has been quantified in the fuel,the amount of fertilizer,the labor costs and the hours of work.Consequently,the environmental impact has been also reduced.An inexpensive system consisting of a reference base station near the field and a mobile unit mounted on the test vehicle has been installed in order to increase the benefits in cereal crops.Global Navigation Satellite System(GNSS)systems including Global Positioning System(GPS),GLONASS,Galileo and Beidou have been used in the analysis.This research serves as a practical guide to implementing a low-cost guidance system to achieve best management practice.
文摘To obtain higher accuracy of information concerning boat motion, the use of global positioning system (GPS) real-time kinematic (RTK) technology was investigated. Through RTK technology, a measurement precision of the ±1 cm range can be achieved. The research equipment included a GPS receiver and a personal digital assistant as a data control and processing unit. Real-time GPS data was captured and processed to acquire various parameters, including the boat track, velocity curve, stroke rate, and stroke distance. Using this data, the quantitative information related to rowing training can be achieved. The results are helpful for analyzing the biomechanical parameters of rowing techniques and for evaluating training efficiency.
基金Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘Starting from 2016,the raw Global Navigation Satellite System(GNSS)measurements can be extracted from the Android Nougat(or later)operating systems.Since then,GNSS smartphone positioning has been given much attention.A high number of related publications indicates the importance of the research in this field,as it has been doing in recent years.Due to the cost-effectiveness of the GNSS smartphones,they can be employed in a wide variety of applications such as cadastral surveys,mapping surveying applications,vehicle and pedestrian navigation and etc.However,there are still some challenges regarding the noisy smartphone GNSS observations,the environment effect and smartphone holding modes and the algorithm development part which restrict the users to achieve high-precision smartphone positioning.In this review paper,we overview the research works carried out in this field with a focus on the following aspects:first,to provide a review of fundamental work on raw smartphone observations and quality assessment of GNSS observations from major smart devices including Google Pixel 4,Google Pixel 5,Xiaomi Mi 8 and Samsung Ultra S20 in terms of their signal strengths and carrier-phase continuities,second,to describe the current state of smartphone positioning research field until most recently in 2021 and,last,to summarize major challenges and opportunities in this filed.Finally,the paper is concluded with some remarks as well as future research perspectives.
基金the National Natural Science Funds of China(41874030)The Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee(18511101801)+1 种基金The National Key Research and Development Program of China(2017YFA0603102)the Fundamental Research Funds for the Central Universities.
文摘The establishment of the BeiDou global navigation satellite system(BDS-3)has been completed,and the current constellation can independently provide positioning service globally.BDS-3 satellites provide quad-frequency signals,which can benefit the ambiguity resolution(AR)and high-precision positioning.This paper discusses the benefits of quad-frequency observations,including the precision gain of multi-frequency high-precision positioning and the sophisticated choice of extra-wide-lane(EWL)or wide-lane(WL)combinations for instantaneous EWL/WL AR.Additionally,the performance of EWL real-time kinematic(ERTK)positioning that only uses EWL/WL combinations is investigated.The results indicate that the horizontal positioning errors of ERTK positioning using ionosphere-free(IF)EWL observations are approximately 0.5 m for the baseline of 27 km and 1 m for the baseline of 300 km.Furthermore,the positioning errors are reduced to the centimetre level if the IF EWL observations are smoothed by narrow-lane observations for a short period.