Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL...Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory r...Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory records generated each month in the United States, operations can be evaluated virtually at any of the over 400,000 traffic signals in the nation. The manual intersection mapping required to generate accurate movement-level trajectory-based performance estimations is the most time-consuming aspect of using CV data to evaluate traffic signal operations. Various studies have utilized vehicle location data to update and create maps;however, most proposed mapping techniques focus on the identification of roadway characteristics that facilitate vehicle navigation and not on the scaling of traffic signal performance measures. This paper presents a technique that uses commercial CV trajectory and open-source OpenStreetMap (OSM) data to automatically map intersection centers and approach areas of interest to estimate signal performance. OSM traffic signal tags are processed to obtain intersection centers. CV data is then used to extract intersection geometry characteristics surrounding the intersection. To demonstrate the proposed technique, intersection geometry is mapped at 500 locations from which trajectory-based traffic signal performance measures are estimated. The results are compared to those obtained from manual geometry definitions. Statistical tests found that at a 99% confidence level, upstream-focused performance estimations are strongly correlated between both methodologies. The presented technique will aid agencies in scaling traffic signal assessment as it significantly reduces the amount of manual labor required.展开更多
Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step...Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step leading to lower in-corn memory consumption. This algorithm is applied to reconstructing compact terrain with mobile robot, achieving satisfying results.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary ...Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.展开更多
Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the ve...Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.展开更多
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c...The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.展开更多
In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Opti...In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.展开更多
In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated netw...The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.展开更多
In this study, we explored to combine traffic maps and smartphone trajectories to model traffic air pollution, exposure and health impact. The approach was step-by-step modeling through the causal chain: engine emissi...In this study, we explored to combine traffic maps and smartphone trajectories to model traffic air pollution, exposure and health impact. The approach was step-by-step modeling through the causal chain: engine emission, traffic density versus traffic velocity, traffic pollution concentration, exposure along individual trajectories, and health risk. A generic street with 100 km/h speed limit was used as an example to test the model. A single fixed-time trajectory had maximum exposure at velocity of 45 km/h at maximum pollution concentration. The street population had maximum exposure shifted to a velocity of 15 km/h due to the congestion density of vehicles. The shift is a universal effect of exposure. In this approach, nearly every modeling step of traffic pollution depended on traffic velocity. A traffic map is a super-efficient pre-processor for calculating real-time traffic pollution exposure at global scale using big data analytics.展开更多
Annual Average Daily Traffic (AADT) maps show, in a comprehensive way for expert as well as non-experts, the evolution of the relatively recent past (1965) until the most current image (2005). They help to analyse Bar...Annual Average Daily Traffic (AADT) maps show, in a comprehensive way for expert as well as non-experts, the evolution of the relatively recent past (1965) until the most current image (2005). They help to analyse Barcelona’s city street network and retrace traffic congestion. The changes in the traffic patterns are due to random actions, resulting from individual liberties and voluntary planning, serving the general interest.展开更多
Spatiotemporal chaos is studied by using the unidirectional traffic coupled lattice model with hyperbolic tangent local map. The coupled map lattice (CML) model can simulate the complex traffic flow phenomenon which i...Spatiotemporal chaos is studied by using the unidirectional traffic coupled lattice model with hyperbolic tangent local map. The coupled map lattice (CML) model can simulate the complex traffic flow phenomenon which is similar to the traditional traffic flow model. The nonlinear feedback method is used to study the control of the chaotic system of the unidirectionally traffic coupled map lattice model. The stability of spatiotemporal chaos in the coupled map lattice is realized. The results of numerical simulation show that there is a relationship between control results and control parameters when controlling spatiotemporal chaos to a uniform stable state in a certain phase space compression parameter region.展开更多
A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and contr...A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and control, and traffic accident evaluation and prevention. Mapping an HD intersection is time-consuming, labor-intensive, and expensive with conventional methods. In this paper, we used a low-channel roadside light detection and range sensor(LiDAR) to automatically and dynamically generate a lane-level intersection, including the signal phases, geometry, layout, and lane directions. First, a mathematical model was proposed to describe the topology and detail of a lane-level intersection. Second, continuous and discontinuous traffic object trajectories were extracted to identify the signal phases and times. Third, the layout, geometry, and lane direction were identified using the convex hull detection algorithm for trajectories. Fourth, a sliding window algorithm was presented to detect the lane marking and extract the lane, and the virtual lane connecting the inbound and outbound of the intersection were generated using the vehicle trajectories within the intersection and considering the traffic rules. In the field experiment, the mean absolute estimation error is 2 s for signal phase and time identification. The lane marking identification Precision and Recall are96% and 94.12%, respectively. Compared with the satellite-based,MMS-based, and crowdsourcing-based lane mapping methods,the average lane location deviation is 0.2 m and the update period is less than one hour by the proposed method with low-channel roadside LiDAR.展开更多
基金supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055)the National Key R&D Program of China(2021YFB2600502).
文摘Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
文摘Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory records generated each month in the United States, operations can be evaluated virtually at any of the over 400,000 traffic signals in the nation. The manual intersection mapping required to generate accurate movement-level trajectory-based performance estimations is the most time-consuming aspect of using CV data to evaluate traffic signal operations. Various studies have utilized vehicle location data to update and create maps;however, most proposed mapping techniques focus on the identification of roadway characteristics that facilitate vehicle navigation and not on the scaling of traffic signal performance measures. This paper presents a technique that uses commercial CV trajectory and open-source OpenStreetMap (OSM) data to automatically map intersection centers and approach areas of interest to estimate signal performance. OSM traffic signal tags are processed to obtain intersection centers. CV data is then used to extract intersection geometry characteristics surrounding the intersection. To demonstrate the proposed technique, intersection geometry is mapped at 500 locations from which trajectory-based traffic signal performance measures are estimated. The results are compared to those obtained from manual geometry definitions. Statistical tests found that at a 99% confidence level, upstream-focused performance estimations are strongly correlated between both methodologies. The presented technique will aid agencies in scaling traffic signal assessment as it significantly reduces the amount of manual labor required.
文摘Building compact 3D maps of the environment models has become an important research topic. This paper presented an efficient stream decimation algorithm of massive meshes. The algorithm adapted the pre-processing step leading to lower in-corn memory consumption. This algorithm is applied to reconstructing compact terrain with mobile robot, achieving satisfying results.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
基金supported by the Major Consulting Project of Chinese Academy of Engineering (Grant No. 2012-ZX-22)the Natural Science Foundation of Chongqing Science & Technology Commission of China (Grant No. 2012jjB40002)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120191110047)the Engineering Center Research Program of Chongqing Science & Technology Commission of China (Grant No. 2011pt-gc30005)the Key Technology R&D Project of Chongqing Science & Technology Commission of China (Grant Nos. 2011AB2052 and 2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.
基金Project supported by the National Key Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10532060, 10602025 and 10802042)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2007A610050, 2009A610014 and 2009A610154)K.C. Wong Magna Fund in Ningbo University
文摘Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
基金the Six Heights of Talent in Jiangsu Prov-ince(No.06-E-044).
文摘The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.
文摘In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.
基金supported by National Key Research and Development Project under Grant No.2020YFB1710900Sichuan International Cooperation Project of Science and Technology Innovation under Grant No.2022YFH0022。
文摘The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.
文摘In this study, we explored to combine traffic maps and smartphone trajectories to model traffic air pollution, exposure and health impact. The approach was step-by-step modeling through the causal chain: engine emission, traffic density versus traffic velocity, traffic pollution concentration, exposure along individual trajectories, and health risk. A generic street with 100 km/h speed limit was used as an example to test the model. A single fixed-time trajectory had maximum exposure at velocity of 45 km/h at maximum pollution concentration. The street population had maximum exposure shifted to a velocity of 15 km/h due to the congestion density of vehicles. The shift is a universal effect of exposure. In this approach, nearly every modeling step of traffic pollution depended on traffic velocity. A traffic map is a super-efficient pre-processor for calculating real-time traffic pollution exposure at global scale using big data analytics.
文摘Annual Average Daily Traffic (AADT) maps show, in a comprehensive way for expert as well as non-experts, the evolution of the relatively recent past (1965) until the most current image (2005). They help to analyse Barcelona’s city street network and retrace traffic congestion. The changes in the traffic patterns are due to random actions, resulting from individual liberties and voluntary planning, serving the general interest.
文摘Spatiotemporal chaos is studied by using the unidirectional traffic coupled lattice model with hyperbolic tangent local map. The coupled map lattice (CML) model can simulate the complex traffic flow phenomenon which is similar to the traditional traffic flow model. The nonlinear feedback method is used to study the control of the chaotic system of the unidirectionally traffic coupled map lattice model. The stability of spatiotemporal chaos in the coupled map lattice is realized. The results of numerical simulation show that there is a relationship between control results and control parameters when controlling spatiotemporal chaos to a uniform stable state in a certain phase space compression parameter region.
基金supported in part by the Scientific Research Project of the Education Department of Jilin Province (JJKH20221020KJ)the National Natural Science Foundation of China (51408257)the Graduate Innovation Fund of Jilin University (101832020CX150)。
文摘A lane-level intersection map is a cornerstone in high-definition(HD) traffic network maps for autonomous driving and high-precision intelligent transportation systems applications such as traffic management and control, and traffic accident evaluation and prevention. Mapping an HD intersection is time-consuming, labor-intensive, and expensive with conventional methods. In this paper, we used a low-channel roadside light detection and range sensor(LiDAR) to automatically and dynamically generate a lane-level intersection, including the signal phases, geometry, layout, and lane directions. First, a mathematical model was proposed to describe the topology and detail of a lane-level intersection. Second, continuous and discontinuous traffic object trajectories were extracted to identify the signal phases and times. Third, the layout, geometry, and lane direction were identified using the convex hull detection algorithm for trajectories. Fourth, a sliding window algorithm was presented to detect the lane marking and extract the lane, and the virtual lane connecting the inbound and outbound of the intersection were generated using the vehicle trajectories within the intersection and considering the traffic rules. In the field experiment, the mean absolute estimation error is 2 s for signal phase and time identification. The lane marking identification Precision and Recall are96% and 94.12%, respectively. Compared with the satellite-based,MMS-based, and crowdsourcing-based lane mapping methods,the average lane location deviation is 0.2 m and the update period is less than one hour by the proposed method with low-channel roadside LiDAR.