Curvature-driven diffusion (CDD) principles were used to develop a novel gradient based image restora- tion algorithm. The algorithm fills in blocks of missing data in a wireless image after transmission through the n...Curvature-driven diffusion (CDD) principles were used to develop a novel gradient based image restora- tion algorithm. The algorithm fills in blocks of missing data in a wireless image after transmission through the network. When images are transmitted over fading channels, especially in the severe circum- stances of a coal mine, blocks of the image may be destroyed by the effects of noise. Instead of using com- mon retransmission query protocols the lost data is reconstructed by using the adaptive curvature-driven diffusion (ACDD) image restoration algorithm in the gradient domain of the destroyed image. Missing blocks are restored by the method in two steps: In step one, the missing blocks are filled in the gradient domain by the ACDD algorithm; in step two, and the image is reconstructed from the reformed gradients by solving a Poisson equation. The proposed method eliminates the staircase effect and accelerates the convergence rate. This is demonstrated by experimental results.展开更多
To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a...To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a joint detection based on Schur Algorithm for image wireless transmission over wireless sensor network. To eliminate error transmissions and save transmission energy, we combine Schur algorithm with joint dynamic detection for wireless transmission of JPEG 2000 encoded image which we proposed in [1]. Schur algorithm is used to computing the decomposition of system matrix to decrease the computational complexity. We de-scribe our transmission protocol, and report on its performance evaluation using a simulation testbed we have designed for this purpose. Our results clearly indicate that our method could approach efficient images transmission in wireless sensor network and the transmission errors are significantly reduced when compared to regular transmissions.展开更多
For the convenience of people with disability and for normal people, a demand for intelligent interfaces is ever increasing and therefore related studies are actively being conducted. Recently a study is being conduct...For the convenience of people with disability and for normal people, a demand for intelligent interfaces is ever increasing and therefore related studies are actively being conducted. Recently a study is being conducted to develop an interface through face expression, movement of the body and eye movements, and further more active attempts to use electrical signals(brainwave, electrocardiogram, electromyogram) measured from the human body is also actively being progressed. In addition, the development and the usage of mobile devices and smart devices are promoting these research activities even more. The brainwave is measured by electrical activities between nerve cells in the cerebral cortex using scalp electrodes. The brainwave is mainly used for diagnosis and treatment of diseases such as epilepsy, encephalitis, brain tumors and brain damage. As a result, the brainwave measurement methods and analytical methods were developed. Interface using the brainwave will not go through language or body behavior which is the result of the information processed by the brain but will pass directly to the system providing a brain-computer interface (BCI). This is possible because a variety of the brainwave appears depending on the human’s physical and mental state. Using the brainwave with the intelligent brain-computer interface or combining it with mobile devices and smart devices, regardless of space constraints, the brainwave measurement should be possible.[4,7] In this study, in order to measure the brainwave without spatial constraint, 16 channel compact brainwave measurements system using a high-speed wireless communications were designed. It was designed with a 16 channel to classify the various brainwave patterns that appear and for estimating the location of the nerve cells that triggered the brainwave. And in order to transmit the brainwave data within the channel without loss, a high-speed wireless communication must be possible that can enable a high-speed wireless transmission more sufficient than the Bluetooth, therefore, 802.11 compliant Wi-Fi communication methods were used to transfer the data to the PC. In addition, by using an analog front-end IC having a single-chip configuration with real-time digital filters, the miniaturization of the system was implemented and in order to verify the system Eye-blocking was used to observe the changes in the EEG signal.展开更多
Distributed speech recognition (DSR) applications have certain QoS (Quality of service) requirements in terms of latency, packet loss rate, etc. To deliver quality guaranteed DSR application over wirelined or wireless...Distributed speech recognition (DSR) applications have certain QoS (Quality of service) requirements in terms of latency, packet loss rate, etc. To deliver quality guaranteed DSR application over wirelined or wireless links, some QoS mechanisms should be provided. We put forward a RTP/RSVP transmission scheme with DSR-specific payload and QoS parameters by modifying the present WAP protocol stack. The simulation result shows that this scheme will provide adequate network bandwidth to keep the real-time transport of DSR data over either wirelined or wireless channels.展开更多
This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, hig...This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, high-availability image compression algorithm. This algorithm mainly has two aspects of improvement measures: the first is to reduce the number of pixels that transmit images, from interlaced scanning to interlaced neighbor scanning;the second is to use JPEG image compression algorithm [1], changing the value of the quantization table in the algorithm [2]. After image compression, the image data volume is greatly reduced;the transmission efficiency is improved;and the problem of excessive data volume during image transmission is effectively solved.展开更多
To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are propose...To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are proposed.Based on the Joint Photographic Experts Group(JPEG)and JPEG 2000 standards,new non-integer and integer quantizations are proposed in the quantization procedure of compression algorithms.Displacement fields from real experiments were used to evaluate the compression ratio and computational time of the algorithm.The results show that the compression ratios of the DCT-based algorithm are mostly below 10%,which are much less than that of the DWT-based algorithm,and the computational speed is also significantly higher than that of the latter.These findings prove the algorithm s effectiveness in real-time displacement field wireless transmission.展开更多
Nowadays, almost every hospital utilizes picture archiving and communications system (PACS) and electronic medical record (EMR) system to manage patient’s data digitally. However, patient’s pictures taken by nurses ...Nowadays, almost every hospital utilizes picture archiving and communications system (PACS) and electronic medical record (EMR) system to manage patient’s data digitally. However, patient’s pictures taken by nurses or physicians to monitor lesions or various test results are not managed well in general. Although for some disease, these pictures provide meaningful information in diagnosis and treatment. In this paper, we propose a management system for these images to improve the accessibility and storability. To manage the images efficiently, the proposed methods utilized the PACS system in the hospital. After sending the image data of each patient to a local monitoring computer, the patient’s information, such as, name, age, male, and registration number were attached on the image. This file was then converted to a DICOM (digital imaging and communications in medicine) files and transferred to the PACS Server. The proposed system promises easy and convenient access on the images of lesions and various test results of patients to support fast and appropriate treatment.展开更多
We propose a system for remote measurement of low-energy radiation, which is implemented using an ARM board and a Zig Bee module. The ARM STM32 F103 board employs a horizontal and vertical moving CMOS camera for front...We propose a system for remote measurement of low-energy radiation, which is implemented using an ARM board and a Zig Bee module. The ARM STM32 F103 board employs a horizontal and vertical moving CMOS camera for front-end data acquisition. The camera can detect radiation over different coordinates given by latitude and longitude in a determined area. For image processing, we used the subtraction–summation algorithm based on gradient multiplication and edge detection. Compared to algorithms such as the max grayscale value, subtraction–summation, and whole summation, the improved subtraction–summation algorithm filters noise and removes the background grayscale value of the whole image to attain higher accuracy, stronger anti-interference ability, and better consistency to determine the radiation dose. We dedicated one port of the transmission module to send data through the STM32 F103 board, whereas another port is connected to the Zig Bee module for data reception. By employing this architecture, we achieved low power consumption and fast response in the remote data transmission.Overall, the proposed system performs the remote measurement of low-energy radiation with stability andreliability, which is required for critical scenarios such as the remote detection of nuclear radiation.展开更多
基金supported by the National High-Tech Research and Development Program of China (No. 2008AA062200)the National Natural Science Foundation of China (No.60802077)the Fundamental Research Funds for the Central Universities (No. 2010QNA43)
文摘Curvature-driven diffusion (CDD) principles were used to develop a novel gradient based image restora- tion algorithm. The algorithm fills in blocks of missing data in a wireless image after transmission through the network. When images are transmitted over fading channels, especially in the severe circum- stances of a coal mine, blocks of the image may be destroyed by the effects of noise. Instead of using com- mon retransmission query protocols the lost data is reconstructed by using the adaptive curvature-driven diffusion (ACDD) image restoration algorithm in the gradient domain of the destroyed image. Missing blocks are restored by the method in two steps: In step one, the missing blocks are filled in the gradient domain by the ACDD algorithm; in step two, and the image is reconstructed from the reformed gradients by solving a Poisson equation. The proposed method eliminates the staircase effect and accelerates the convergence rate. This is demonstrated by experimental results.
文摘To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a joint detection based on Schur Algorithm for image wireless transmission over wireless sensor network. To eliminate error transmissions and save transmission energy, we combine Schur algorithm with joint dynamic detection for wireless transmission of JPEG 2000 encoded image which we proposed in [1]. Schur algorithm is used to computing the decomposition of system matrix to decrease the computational complexity. We de-scribe our transmission protocol, and report on its performance evaluation using a simulation testbed we have designed for this purpose. Our results clearly indicate that our method could approach efficient images transmission in wireless sensor network and the transmission errors are significantly reduced when compared to regular transmissions.
文摘For the convenience of people with disability and for normal people, a demand for intelligent interfaces is ever increasing and therefore related studies are actively being conducted. Recently a study is being conducted to develop an interface through face expression, movement of the body and eye movements, and further more active attempts to use electrical signals(brainwave, electrocardiogram, electromyogram) measured from the human body is also actively being progressed. In addition, the development and the usage of mobile devices and smart devices are promoting these research activities even more. The brainwave is measured by electrical activities between nerve cells in the cerebral cortex using scalp electrodes. The brainwave is mainly used for diagnosis and treatment of diseases such as epilepsy, encephalitis, brain tumors and brain damage. As a result, the brainwave measurement methods and analytical methods were developed. Interface using the brainwave will not go through language or body behavior which is the result of the information processed by the brain but will pass directly to the system providing a brain-computer interface (BCI). This is possible because a variety of the brainwave appears depending on the human’s physical and mental state. Using the brainwave with the intelligent brain-computer interface or combining it with mobile devices and smart devices, regardless of space constraints, the brainwave measurement should be possible.[4,7] In this study, in order to measure the brainwave without spatial constraint, 16 channel compact brainwave measurements system using a high-speed wireless communications were designed. It was designed with a 16 channel to classify the various brainwave patterns that appear and for estimating the location of the nerve cells that triggered the brainwave. And in order to transmit the brainwave data within the channel without loss, a high-speed wireless communication must be possible that can enable a high-speed wireless transmission more sufficient than the Bluetooth, therefore, 802.11 compliant Wi-Fi communication methods were used to transfer the data to the PC. In addition, by using an analog front-end IC having a single-chip configuration with real-time digital filters, the miniaturization of the system was implemented and in order to verify the system Eye-blocking was used to observe the changes in the EEG signal.
文摘Distributed speech recognition (DSR) applications have certain QoS (Quality of service) requirements in terms of latency, packet loss rate, etc. To deliver quality guaranteed DSR application over wirelined or wireless links, some QoS mechanisms should be provided. We put forward a RTP/RSVP transmission scheme with DSR-specific payload and QoS parameters by modifying the present WAP protocol stack. The simulation result shows that this scheme will provide adequate network bandwidth to keep the real-time transport of DSR data over either wirelined or wireless channels.
文摘This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, high-availability image compression algorithm. This algorithm mainly has two aspects of improvement measures: the first is to reduce the number of pixels that transmit images, from interlaced scanning to interlaced neighbor scanning;the second is to use JPEG image compression algorithm [1], changing the value of the quantization table in the algorithm [2]. After image compression, the image data volume is greatly reduced;the transmission efficiency is improved;and the problem of excessive data volume during image transmission is effectively solved.
基金The National Natural Science Foundation of China(No.11827801,11902074)。
文摘To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are proposed.Based on the Joint Photographic Experts Group(JPEG)and JPEG 2000 standards,new non-integer and integer quantizations are proposed in the quantization procedure of compression algorithms.Displacement fields from real experiments were used to evaluate the compression ratio and computational time of the algorithm.The results show that the compression ratios of the DCT-based algorithm are mostly below 10%,which are much less than that of the DWT-based algorithm,and the computational speed is also significantly higher than that of the latter.These findings prove the algorithm s effectiveness in real-time displacement field wireless transmission.
文摘Nowadays, almost every hospital utilizes picture archiving and communications system (PACS) and electronic medical record (EMR) system to manage patient’s data digitally. However, patient’s pictures taken by nurses or physicians to monitor lesions or various test results are not managed well in general. Although for some disease, these pictures provide meaningful information in diagnosis and treatment. In this paper, we propose a management system for these images to improve the accessibility and storability. To manage the images efficiently, the proposed methods utilized the PACS system in the hospital. After sending the image data of each patient to a local monitoring computer, the patient’s information, such as, name, age, male, and registration number were attached on the image. This file was then converted to a DICOM (digital imaging and communications in medicine) files and transferred to the PACS Server. The proposed system promises easy and convenient access on the images of lesions and various test results of patients to support fast and appropriate treatment.
基金supported by the Plan for Scientific Innovation Talent of Henan Province(No.154100510007)the Program for Creative Export Mental Project of National Undergraduate Students(No.CEPNU 5101022000004)
文摘We propose a system for remote measurement of low-energy radiation, which is implemented using an ARM board and a Zig Bee module. The ARM STM32 F103 board employs a horizontal and vertical moving CMOS camera for front-end data acquisition. The camera can detect radiation over different coordinates given by latitude and longitude in a determined area. For image processing, we used the subtraction–summation algorithm based on gradient multiplication and edge detection. Compared to algorithms such as the max grayscale value, subtraction–summation, and whole summation, the improved subtraction–summation algorithm filters noise and removes the background grayscale value of the whole image to attain higher accuracy, stronger anti-interference ability, and better consistency to determine the radiation dose. We dedicated one port of the transmission module to send data through the STM32 F103 board, whereas another port is connected to the Zig Bee module for data reception. By employing this architecture, we achieved low power consumption and fast response in the remote data transmission.Overall, the proposed system performs the remote measurement of low-energy radiation with stability andreliability, which is required for critical scenarios such as the remote detection of nuclear radiation.