期刊文献+
共找到3,661篇文章
< 1 2 184 >
每页显示 20 50 100
EDU-GAN:Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising
1
作者 Yunjing Liu Erhu Zhang +2 位作者 Jingjing Wang Guangfeng Lin Jinghong Duan 《Computers, Materials & Continua》 SCIE EI 2024年第7期1633-1653,共21页
Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.Howev... Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets. 展开更多
关键词 Dual-domain discriminators inscription images denoising edge-guided generator
下载PDF
A Second-Order Image Denoising Model for Contrast Preservation
2
作者 Wei Zhu 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1406-1427,共22页
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second... In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model. 展开更多
关键词 image denoising Variational model image contrast Augmented Lagrangian method(ALM)
下载PDF
Image Processing for Denoising Using Composite Adaptive Filtering Methods Based on RMSE
3
作者 Yanlu Chen Ruijie Wang +1 位作者 Puming Zong Da Chen 《Open Journal of Applied Sciences》 2024年第3期660-675,共16页
As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images... As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images contaminated by unknown noise has gradually become one of the research focuses. In order to achieve blind denoising and separation to restore images, this paper proposes a method for image processing based on Root Mean Square Error (RMSE) by integrating multiple filtering methods for denoising. This method includes Wavelet Filtering, Gaussian Filtering, Median Filtering, Mean Filtering, Bilateral Filtering, Adaptive Bandpass Filtering, Non-local Means Filtering and Regularization Denoising suitable for different types of noise. We can apply this method to denoise images contaminated by blind noise sources and evaluate the denoising effects using RMSE. The smaller the RMSE, the better the denoising effect. The optimal denoising result is selected through comprehensively comparing the RMSE values of all methods. Experimental results demonstrate that the proposed method effectively denoises and restores images contaminated by blind noise sources. 展开更多
关键词 Blind denoising Adaptive RMSE image Restoratio
下载PDF
BeFOI: A Novel Method Based on Conditional Diffusion Model for Medical Image Denoising
4
作者 Huijie Hu Zhen Huang 《Journal of Electronic Research and Application》 2024年第2期158-165,共8页
The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,compl... The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images. 展开更多
关键词 Diffusion model denoising Medical images
下载PDF
Variant Wasserstein Generative Adversarial Network Applied on Low Dose CT Image Denoising
5
作者 Anoud A.Mahmoud Hanaa A.Sayed Sara S.Mohamed 《Computers, Materials & Continua》 SCIE EI 2023年第5期4535-4552,共18页
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a be... Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the diagnosis.So,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and confidence.This study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss functions.Furthermore,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed models.The results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and WGAN-VGG.The proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 percent.Experiments prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU. 展开更多
关键词 Machine learning deep learning image denoising low dose CT loss function
下载PDF
Novel Double Modular Redundancy Based Fault-Tolerant FIR Filter for Image Denoising
6
作者 V.S.Vaisakhi D.Surendran 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期181-193,共13页
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ... In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected. 展开更多
关键词 Fault tolerance FILTERS efficiency REDUNDANCY image denoising error correction codes double modular redundancy
下载PDF
A comparative study of the denoising methods of Thematic Mapper images for forest areas 被引量:1
7
作者 赵正勇 王立海 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期123-127,共5页
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica... The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas. 展开更多
关键词 denoising Edge/boundary retention Enhanced self-adaptive filter TM image
下载PDF
Iterative regularization method for image denoising with adaptive scale parameter
8
作者 李文书 骆建华 +2 位作者 刘且根 何芳芳 魏秀金 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期453-456,共4页
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi... In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images. 展开更多
关键词 iterative regularization model (IRM) total variation varying scale parameter image denoising
下载PDF
A Tabletop Nano-CT Image Noise Reduction Network Based on 3-Dimensional Axial Attention Mechanism
9
作者 Huijuan Fu Linlin Zhu +5 位作者 ChunhuiWang Xiaoqi Xi Yu Han Lei Li Yanmin Sun Bin Yan 《Computers, Materials & Continua》 SCIE EI 2024年第7期1711-1725,共15页
Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process ... Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process is time-consuming.For 3D reconstruction data,this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet(Axial Attention DeNoise ResNet).The network is framed by theU-net structure.The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block.Each layer of the residual dense block can directly access the features of the previous layer,which reduces the redundancy of parameters and improves the efficiency of network training.The 3D axial attention mechanism enhances the correlation between 3D information in the training process and captures the long-distance dependence.It can improve the noise reduction effect and avoid the loss of image structure details.Experimental results show that the network can effectively improve the image quality of a 0.1-s exposure scan to a level close to a 3-s exposure,significantly shortening the sample scanning time. 展开更多
关键词 Deep learning tabletop Nano-CT image denoising 3D axial attention mechanism
下载PDF
Research on Image Preprocessing Algorithm for Rail Surface Recognition
10
作者 Jihong Zuo Lili Liu +1 位作者 Chuanyin Yang Yufeng Tang 《Open Journal of Applied Sciences》 2024年第10期2801-2808,共8页
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde... The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy. 展开更多
关键词 image Processing image Graying image denoising image Database
下载PDF
Coupling denoising algorithm based on discrete wavelet transform and modified median filter for medical image 被引量:27
11
作者 CHEN Bing-quan CUI Jin-ge +2 位作者 XU Qing SHU Ting LIU Hong-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期120-131,共12页
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi... In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition. 展开更多
关键词 medical image image denoising discrete wavelet transform modified median filter coupling denoising
下载PDF
SAR image denoising based on wavelet-fractal analysis 被引量:4
12
作者 Zhao Jian Cao Zhengwen Zhou Mingquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期45-48,共4页
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum... Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced. 展开更多
关键词 Synthetic aperture radar image WAVELET Multifractal analysis denoising Hoelder exponent
下载PDF
Denoising of Chinese calligraphy tablet images based on run-length statistics and structure characteristic of character strokes 被引量:7
13
作者 ZHANG Jun-song YU Jin-hui +1 位作者 MAO Guo-hong YE Xiu-zi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第7期1178-1186,共9页
In this paper, a novel approach is proposed for denoising of Chinese calligraphy tablet documents. The method includes two phases: First, a partial differential equations (PDE) based the total variation model and Otsu... In this paper, a novel approach is proposed for denoising of Chinese calligraphy tablet documents. The method includes two phases: First, a partial differential equations (PDE) based the total variation model and Otsu thresholding method are used to preprocess the calligraphy document image. Second, a new method based on run-length statistics and structure charac- teristics of Chinese characters is proposed to remove some random and ant-like noises. This includes the optimal threshold se- lection from histogram of run-length probability density, and improved Hough transform algorithm for line shape noise detection and removal. Examples are given in the paper to demonstrate the proposed method. 展开更多
关键词 denoising Tablet images Structure characteristics Character strokes
下载PDF
Image Denoising Using Local Adaptive Least Squares Support Vector Regression 被引量:7
14
作者 WU Dingxue PENG Daiqiang TIAN Jinwen 《Geo-Spatial Information Science》 2007年第3期196-199,共4页
Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squ... Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squares support vector regression is proposed. Investigation on real images contaminated by Gaussian noise has demonstrated that the proposed method can achieve an acceptable trade off between the noise removal and smoothing of the edges and details. 展开更多
关键词 least square support vector machines image denoising
下载PDF
Improved Non-Local Means Algorithm for Image Denoising 被引量:4
15
作者 Lingli Huang 《Journal of Computer and Communications》 2015年第4期23-29,共7页
Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a... Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance. 展开更多
关键词 image denoising NON-LOCAL MEANS GAUSSIAN Noise
下载PDF
Image denoising algorithm of refuge chamber by combining wavelet transform and bilateral filtering 被引量:9
16
作者 Zhang Weipeng 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期228-232,共5页
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ... In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines. 展开更多
关键词 Refuge chamber image denoising Bilateral filtering Wavelet transform
下载PDF
Improved Weight Function for Nonlocal Means Image Denoising 被引量:2
17
作者 XU Jianlou HAO Yan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第5期394-398,共5页
The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel p... The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel patches instead of the commonly used similarity measure based on noisy observations. By the law of large number,the norm for the pre-processing pixel patches is closer to the norm of the original clean pixel patches,so the proposed weight functions are more optimized and the selected similar patches are more accurate. Experimental results indicate the proposed algorithm achieves better restored results compared to the classical NLM's method. 展开更多
关键词 image denoising NONLOCAL means(NLM) WEIGHT PATCH SIMILARITY
下载PDF
Fractional-order Sparse Representation for Image Denoising 被引量:1
18
作者 Leilei Geng Zexuan Ji +1 位作者 Yunhao Yuan Yilong Yin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期555-563,共9页
Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dicti... Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation(FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster.Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency. 展开更多
关键词 Index Terms-Fractional-order image denoising MULTI-SCALE sparse representation.
下载PDF
Window shrink contourlet coefficients for image denoising 被引量:2
19
作者 金炜 潘英俊 +1 位作者 魏彪 冯鹏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期540-543,共4页
An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold meth... An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold method, namely CWinShrink, is presented. It shrinks the contourlet coefficients with adaptive shrinkage factors. The shrinkage factors were calculated with reference to the sum of squares of the contourlet coefficients within the neighborhood window. This approach achieves enhanced results for images those are corrupted with additive Gaussian noise. In numerical comparisons with various methods, for a set of noisy images (the PSNR range fi'om 10.86dB to 26.91dB) , the presented method outperforms VisuShrink and Wiener filter in terms of the PSNR. Experiments also show that this method not only keeps the details of image but also yields denoised images with better visual quality. 展开更多
关键词 contourlet transform wavelet transfotTn CWinShrink image denoising
下载PDF
Image Denoising with Adaptive Weighted Graph Filtering 被引量:2
20
作者 Ying Chen Yibin Tang +3 位作者 Lin Zhou Yan Zhou Jinxiu Zhu Li Zhao 《Computers, Materials & Continua》 SCIE EI 2020年第8期1219-1232,共14页
Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where cle... Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods. 展开更多
关键词 Graph filtering image denoising Laplacian matrix low rank
下载PDF
上一页 1 2 184 下一页 到第
使用帮助 返回顶部