Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we ...Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we introduce a single-photon interconnector composed of two individual nanowires and an optical N-type four-level emitter that can turn the optical connection on and off optically. Because of dipole-induced transmission at the single-photon level, a single photon can travel between the two nanowires reciprocally, which guarantees its application as an all-optical interconnector.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274242,11474221,and 11574229)the Joint Fund of the National Natural Science Foundation of China+2 种基金the China Academy of Engineering Physics(Grant No.U1330203)the National Key Basic Research Special Foundation of China(Grant Nos.2011CB922203 and 2013CB632701)the Doctor Startup Fund of the Natural Science of Jinggangshan University,China(Grant No.JZB16003)
文摘Recently, theoretical and experimental nano-sized fundamental devices for optical circuits have been proposed at the single-photon level. The assembly of a realistic optical circuit is now a reality. In this work, we introduce a single-photon interconnector composed of two individual nanowires and an optical N-type four-level emitter that can turn the optical connection on and off optically. Because of dipole-induced transmission at the single-photon level, a single photon can travel between the two nanowires reciprocally, which guarantees its application as an all-optical interconnector.