Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that...Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.展开更多
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which ma...We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.展开更多
In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(...In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included.展开更多
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent y...The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.展开更多
We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibri...We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.展开更多
Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomen...Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.展开更多
We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magneti...We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.展开更多
The pseudo-rapidity distributions of the charged particles produced in the asymmetric collision systems p+Al,p+Au and ^(3)He+Au at√S_(NN)=200 GeV GeV are evaluated in the framework of a fireball model with Tsallis th...The pseudo-rapidity distributions of the charged particles produced in the asymmetric collision systems p+Al,p+Au and ^(3)He+Au at√S_(NN)=200 GeV GeV are evaluated in the framework of a fireball model with Tsallis thermodynamics.The fireball model assumes that the experimentally measured particles are produced by fireballs following the Tsallis distribution and it can effectively describe the experimental data.Our results as well as previous results for d+Au collisions at√S_(NN)=200 GeV GeV and p+Pb collisions at√S_(NN)=5.02 TeV TeV validate that the fireball model based on Tsallis thermodynamics can provide a universal framework for pseudo-rapidity distribution of the charged particles produced in asymmetric collision systems.We predict the centrality dependence of the total charged particle multiplicity in the p+Al,p+Au and 3He+Au collisions.Additionally,the dependences of the fireball model parameters(y_(0a),y_(0A),σ_(a) and σ_(A))on the centrality and system size are studied.展开更多
The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic...The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic heavy ion collider (RHIC)beam energy scan program √S_(NN) and in the Cu+Cu collisions at √S_(NN),200 GeV are studied using the thermodynamically consistent Tsallis distribution.The energy density,pressure,and particle density decrease monotonically with the collision energy for the same collision centrality;These properties also decrease monotonically from the central to peripheral collisions at the same collision energy.While the scaled energy densityε∕T^(4) and scaled entropy density s∕T^(3) demonstrate the opposite trend with the collision energy for the same collision centrality.There is a correlation betweenε∕T^(4) and s∕T^(3) at the same centrality.In addition,the squared speed of sound was calculated to determine that all the collision energies share nearly the same value at different collision centralities.展开更多
The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the...The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the relaxation time of the system.In this study,we investigated the effect of relaxation time on the SBBC function.We propose a method for calculating the SBBC function with relaxation-time approximation for evolving sources.SBBC functions of D^(0)D^(-0)in relativistic heavy-ion collisions were investigated using a hydrodynamic model.We found that the relaxation time reduces the amplitudes of the SBBC functions.This becomes apparent for long relaxation times and large initial relative deviations of the chaotic and squeezed amplitudes from their equilibrium values in the temporal steps.展开更多
We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time ...We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the squeezed BBC of D^0~0 is significant in peripheral Au+Au collisions at the relativistic heavy ion collider energy. A possible way to detect the squeezed BBC in an experiment is presented.展开更多
The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. F...The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. For the same q and different direction of q, the two-pion correlation functions show characteristic oscillation behaviors, which may be used to distinguish the two-source models. Our research also showes that the multi-source pion correlations can resolve the HBT puzzle.展开更多
In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is t...In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is the critical exponent. In this work, the value of =2.3 is adopted from the previous studies[1]. In general coefficients, av, as, asym, ac, ap and the chemical potentials are temperature and density dependent.展开更多
A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton...A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton cascade,hadronization,and a hadron cascade.Here,we review the main developments after the first public release of the AMPT source code in 2004 and the corre-sponding publication that described the physics details of the model at that time.We also discuss possible directions for future developments of the AMPT model to better study the properties of the dense matter created in relativistic collisions of small or large systems.展开更多
By implementing an additional heavy quark-antiquark pair production trigger in a multiphase transport(AMPT)model,we study the effect on anisotropy flows of identified particles with a focus on charged particles and qu...By implementing an additional heavy quark-antiquark pair production trigger in a multiphase transport(AMPT)model,we study the effect on anisotropy flows of identified particles with a focus on charged particles and quarkonium(J/ΨandΥ).A systematic increase in the collision rate for active partons in the AMPT model with such an implementation has been observed.It leads to a slight increase of identified particles anisotropy flows as a function of transverse momentum(pT)and rapidity,and gives a better description of the experimental data of elliptic flow toward larger pT.Our approach provides an efficient way to study the heavy quark dynamics in the AMPT model at LHC energies.展开更多
We study the production and angular correlationof charm hadrons in hot and dense matter produced in high-energy nuclear-nuclear collisions within a multiphasetransport model(AMPT).By triggering additional charm-antich...We study the production and angular correlationof charm hadrons in hot and dense matter produced in high-energy nuclear-nuclear collisions within a multiphasetransport model(AMPT).By triggering additional charm-anticharm quark pair production in the AMPT,the modeldescribes the D^0 nuclear modification factor in the low andintermediate pr regions in Au+Au collisions at√VSNN=200 GeV reasonably well.Further exploration of the D^0 pair azimuthal angular correlation for different centralitiesshows clear evolution from low-multiplicity to high-mul-tiplicity events,which is associated with the number ofcharm quark interactions with medium partons duringAMPT transport.展开更多
We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multipl...We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multiple parton interactions and gluon contributions is studied and found to be a possible source of the splitting of the particle yields as a function of p_T with respect to the multiplicity. No obvious particle species dependence of the splitting is observed.The multiplicity dependence of the ratios Kˉ/πˉ, K^+/π^+,/πˉ, p/π^+, and K_s^0 at mid-rapidity in p+ p collisions is found to follow a tendency similar to that in Au t Au collisions at (s_(NN))^(1/2) = 200 GeV at the Relativistic Heavy Ion Collider, indicating similar underlying initial production mechanisms despite the differences in the initial colliding systems.展开更多
Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment...Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment methodology. The evidence of non-statistical multiplicity fluctuation is found in 160-AgBr collisions at 60 A GeV, but not in 56Fe-AgBr collisions at 500 A MeV, 84Kr-AgBr collisions at 1.7 A GeV, 16O-AgBr collisions at 3.7 A GeV and 197Au-AgBr collisions at 10.7 A GeV.展开更多
基金This work is supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)+3 种基金the National Natural Science Foundation of China(Nos.12275053,12025501,11890710,11890714,12147101,12075061,and 12225502)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)Shanghai National Science Foundation(No.20ZR1404100)STCSM(No.23590780100).
文摘Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)National Natural Science Foundation of China with Project(Nos.11935007,12035007,12247127,and 12247132)China Postdoctoral Science Foundation supports S.Wang under project No.2021M701279.
文摘We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.
基金partly supported by the National Natural Science Foundation of China (Nos. U2032145 and 11875125)the National Key Research and Development Program of China (No. 2020YFE0202002)。
文摘In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included.
基金supported by Shanghai Natural Science Foundation(No.14ZR1403000)1000 Young Talents Program of China+2 种基金the National Natural Science Foundation of China(No.11535012)supported by China Postdoctoral Science Foundation under Grant No.2016M590312support from RIKEN-BNL Research Center
文摘The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.
基金the US Department of Energy(DOE)(No.DE-SC0013460)the National Science Foundation(NSF)(No.PHY-2012922)+1 种基金the National Natural Science Foundation of China(No.11975079)the US Department of Energy,Office of Science,Office of Nuclear Physics,within the framework of the Beam Energy Scan Theory(BEST)Topical Collaboration.
文摘We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.
基金supported by National Natural Science Foundation of China(Nos.11535012 and 11675041)。
文摘Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.
基金supported in part by the National Natural Science Foundation of China(Nos.11890713,11890714,11835002,11961131011,11421505,11535012 and 11890713)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB34030202 and XDB34030102)。
文摘We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.11905120,11947416)the Natural Science Foundation of Sichuan Province(No.2023NSFSC1322)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-YB-012)the United States Department of Energy(#DE-FG02-93ER40773)the NNSA(No.DENA0003841(CENTAUR)).
文摘The pseudo-rapidity distributions of the charged particles produced in the asymmetric collision systems p+Al,p+Au and ^(3)He+Au at√S_(NN)=200 GeV GeV are evaluated in the framework of a fireball model with Tsallis thermodynamics.The fireball model assumes that the experimentally measured particles are produced by fireballs following the Tsallis distribution and it can effectively describe the experimental data.Our results as well as previous results for d+Au collisions at√S_(NN)=200 GeV GeV and p+Pb collisions at√S_(NN)=5.02 TeV TeV validate that the fireball model based on Tsallis thermodynamics can provide a universal framework for pseudo-rapidity distribution of the charged particles produced in asymmetric collision systems.We predict the centrality dependence of the total charged particle multiplicity in the p+Al,p+Au and 3He+Au collisions.Additionally,the dependences of the fireball model parameters(y_(0a),y_(0A),σ_(a) and σ_(A))on the centrality and system size are studied.
基金supported in part by the National Natural Science Foundation of China (Nos. 11905120 and 11947416)the Natural Science Foundation of the Sichuan Province (No. 2023NSFSC1322)+1 种基金the United States Department of Energy (#DE-FG02-93ER40773)the NNSA (No. DENA0003841 (CENTAUR))。
文摘The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic heavy ion collider (RHIC)beam energy scan program √S_(NN) and in the Cu+Cu collisions at √S_(NN),200 GeV are studied using the thermodynamically consistent Tsallis distribution.The energy density,pressure,and particle density decrease monotonically with the collision energy for the same collision centrality;These properties also decrease monotonically from the central to peripheral collisions at the same collision energy.While the scaled energy densityε∕T^(4) and scaled entropy density s∕T^(3) demonstrate the opposite trend with the collision energy for the same collision centrality.There is a correlation betweenε∕T^(4) and s∕T^(3) at the same centrality.In addition,the squared speed of sound was calculated to determine that all the collision energies share nearly the same value at different collision centralities.
基金supported by the National Natural Science Foundation of China (Nos. 12175031 and 11675034)
文摘The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the relaxation time of the system.In this study,we investigated the effect of relaxation time on the SBBC function.We propose a method for calculating the SBBC function with relaxation-time approximation for evolving sources.SBBC functions of D^(0)D^(-0)in relativistic heavy-ion collisions were investigated using a hydrodynamic model.We found that the relaxation time reduces the amplitudes of the SBBC functions.This becomes apparent for long relaxation times and large initial relative deviations of the chaotic and squeezed amplitudes from their equilibrium values in the temporal steps.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675034,11647166 and 11675033
文摘We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the squeezed BBC of D^0~0 is significant in peripheral Au+Au collisions at the relativistic heavy ion collider energy. A possible way to detect the squeezed BBC in an experiment is presented.
文摘The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. For the same q and different direction of q, the two-pion correlation functions show characteristic oscillation behaviors, which may be used to distinguish the two-source models. Our research also showes that the multi-source pion correlations can resolve the HBT puzzle.
文摘In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is the critical exponent. In this work, the value of =2.3 is adopted from the previous studies[1]. In general coefficients, av, as, asym, ac, ap and the chemical potentials are temperature and density dependent.
基金Z.-W.L.is supported in part by the National Science Foundation under Grant No.PHY-2012947L.Z.is supported in part by the National Natural Science Foundation of China under Grant No.11905188.
文摘A multi-phase transport(AMPT)model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components:the fluctuating initial condition,a parton cascade,hadronization,and a hadron cascade.Here,we review the main developments after the first public release of the AMPT source code in 2004 and the corre-sponding publication that described the physics details of the model at that time.We also discuss possible directions for future developments of the AMPT model to better study the properties of the dense matter created in relativistic collisions of small or large systems.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34030200)the Guangdong Major Project of Basic and Applied Basic Research(No. 2020B0301030008)the National Natural Science Foundation of China (Nos. 12025501, 11890710, 11890714, and12147114)
文摘By implementing an additional heavy quark-antiquark pair production trigger in a multiphase transport(AMPT)model,we study the effect on anisotropy flows of identified particles with a focus on charged particles and quarkonium(J/ΨandΥ).A systematic increase in the collision rate for active partons in the AMPT model with such an implementation has been observed.It leads to a slight increase of identified particles anisotropy flows as a function of transverse momentum(pT)and rapidity,and gives a better description of the experimental data of elliptic flow toward larger pT.Our approach provides an efficient way to study the heavy quark dynamics in the AMPT model at LHC energies.
基金This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34030200)the National Natural Science Foundation of China(Nos.12025501,11890710,and 11775288)。
文摘We study the production and angular correlationof charm hadrons in hot and dense matter produced in high-energy nuclear-nuclear collisions within a multiphasetransport model(AMPT).By triggering additional charm-anticharm quark pair production in the AMPT,the modeldescribes the D^0 nuclear modification factor in the low andintermediate pr regions in Au+Au collisions at√VSNN=200 GeV reasonably well.Further exploration of the D^0 pair azimuthal angular correlation for different centralitiesshows clear evolution from low-multiplicity to high-mul-tiplicity events,which is associated with the number ofcharm quark interactions with medium partons duringAMPT transport.
基金supported by the Major State Basic Research Development Program in China(No.2014CB845400)the National Natural Science Foundation of China(No.11375184)+2 种基金the Youth Innovation Promotion Association Fund of CAS(No.CX2030040079)the Ministry of Science and Technology(Mo ST)of China(No.2016YFE0104800)the Science and Technological Fund of Anhui Province for Outstanding Youth(No.1808085J02)
文摘We report the multiplicity dependence of charged particle production for the n~±, K~±, p, , and ? mesons at |y|<1:0 in p + p collisions at s^(1/2) = 200 GeV from a PYTHIA simulation. The impact of multiple parton interactions and gluon contributions is studied and found to be a possible source of the splitting of the particle yields as a function of p_T with respect to the multiplicity. No obvious particle species dependence of the splitting is observed.The multiplicity dependence of the ratios Kˉ/πˉ, K^+/π^+,/πˉ, p/π^+, and K_s^0 at mid-rapidity in p+ p collisions is found to follow a tendency similar to that in Au t Au collisions at (s_(NN))^(1/2) = 200 GeV at the Relativistic Heavy Ion Collider, indicating similar underlying initial production mechanisms despite the differences in the initial colliding systems.
基金supported by the National Natural Science Foundation of China(Grant No. 10475054)the Natural Science Foundation of Shanxi Province,China(Grant No. 2008011005)the Shanxi Provincial Foundation for Returned Scholars of China
文摘Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment methodology. The evidence of non-statistical multiplicity fluctuation is found in 160-AgBr collisions at 60 A GeV, but not in 56Fe-AgBr collisions at 500 A MeV, 84Kr-AgBr collisions at 1.7 A GeV, 16O-AgBr collisions at 3.7 A GeV and 197Au-AgBr collisions at 10.7 A GeV.