期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Calculate Joint Probability Distribution of Steady Directed Cyclic Graph with Local Data and Domain Casual Knowledge 被引量:1
1
作者 Qin Zhang Kun Qiu Zhan Zhang 《China Communications》 SCIE CSCD 2018年第7期146-155,共10页
It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has... It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state. 展开更多
关键词 directed cyclic graph probabilistic reasoning parameter learning causality complex network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部