The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The f...The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The flow stress-strain curves show the typical dynamic recrystallization with a peak,before reaching the steady state flow at higher deformation temperatures and lower strain rates. The constitutive equation governing the dynamic recrystallization( DRX) was obtained and the average activation energy of deformation was calculated as Q = 389. 5 kJ / mol by the regression analysis. The DRX grain size was also found to decrease with the increasing strain rate and the decreasing deformation temperature. The austenite grain size was refined from 118. 0 μm to 15. 07-40. 01 μm by DRX. The DRX grain size under diverse deformation conditions predicted by mathematical model agrees well with experimental results.展开更多
基金National Natural Science Foundation of China(No.51261009)
文摘The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The flow stress-strain curves show the typical dynamic recrystallization with a peak,before reaching the steady state flow at higher deformation temperatures and lower strain rates. The constitutive equation governing the dynamic recrystallization( DRX) was obtained and the average activation energy of deformation was calculated as Q = 389. 5 kJ / mol by the regression analysis. The DRX grain size was also found to decrease with the increasing strain rate and the decreasing deformation temperature. The austenite grain size was refined from 118. 0 μm to 15. 07-40. 01 μm by DRX. The DRX grain size under diverse deformation conditions predicted by mathematical model agrees well with experimental results.