BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as per...BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.展开更多
The study of inter-system bias(ISB)is important for multi-system fusion and the performance of different signal compatibility.In this paper,the stability of ISB at the BDS3/BDS2 receiver end is calculated and analyzed...The study of inter-system bias(ISB)is important for multi-system fusion and the performance of different signal compatibility.In this paper,the stability of ISB at the BDS3/BDS2 receiver end is calculated and analyzed for different time spans(DOY 060~090 in 2021)from a total of 31 MGEX and iGMAS stations.We adopted two estimation strategies,random walk and constant approach,using the precision products of orbit and clock bias provided by WUM,the influence of which on ISB was also analyzed.Our results showed that the ISB value varied little within a day,and the mean of daily ISB standard deviation was only 0.037 m when the observation condition was good.The signal reception was continuous,indicating a high ISB stability for one day.If extending the time series to one month,however,the ISB standard deviation calculated by constant approach,in which a constant ISB is estimated on a daily basis was about 0.1 m,and the results of adjacent days were not continuous,with no apparent pattern.Concerning the random walk approach,the obtained ISB time series also had a jump,and the conclusion was the same as that of the constant strategy.Besides,receiver types showed a strong regularity in ISB numerical situation,and the distribution of ISB values corresponding to the same receiver type was relatively close.Therefore,we conclude that the ISB parameters remain stable in the short term(one day)and less stable in the long-term period.It is recommended that the ISB term should be set as a constant estimate every day in BDS3/BDS2 solutions,regardless of receiver type consistency.展开更多
Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The ...Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.展开更多
The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean...The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.展开更多
文摘BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.
基金the Natural Science Innovation Group Foundation of China under Grants NO.41721003the Science and Technology Support Project of Department of Natural Resources of Hubei Province under Grants NO.ZRZY2022KJ29+1 种基金the Special Fund of Hubei Luojia Laboratory under Grants NO.220100020the National Natural Science Foundation of China under Grants NO.42174030.
文摘The study of inter-system bias(ISB)is important for multi-system fusion and the performance of different signal compatibility.In this paper,the stability of ISB at the BDS3/BDS2 receiver end is calculated and analyzed for different time spans(DOY 060~090 in 2021)from a total of 31 MGEX and iGMAS stations.We adopted two estimation strategies,random walk and constant approach,using the precision products of orbit and clock bias provided by WUM,the influence of which on ISB was also analyzed.Our results showed that the ISB value varied little within a day,and the mean of daily ISB standard deviation was only 0.037 m when the observation condition was good.The signal reception was continuous,indicating a high ISB stability for one day.If extending the time series to one month,however,the ISB standard deviation calculated by constant approach,in which a constant ISB is estimated on a daily basis was about 0.1 m,and the results of adjacent days were not continuous,with no apparent pattern.Concerning the random walk approach,the obtained ISB time series also had a jump,and the conclusion was the same as that of the constant strategy.Besides,receiver types showed a strong regularity in ISB numerical situation,and the distribution of ISB values corresponding to the same receiver type was relatively close.Therefore,we conclude that the ISB parameters remain stable in the short term(one day)and less stable in the long-term period.It is recommended that the ISB term should be set as a constant estimate every day in BDS3/BDS2 solutions,regardless of receiver type consistency.
基金the grant names“ProfessionalDevelopment Research University Grant”(“UTM Vot No.05E69”and“TDR grant Vot No.05G27”).
文摘Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.
基金the State Oceanic Administration "95" Principal Project "9501" National Antarctic"95" Principal
文摘The Shipboard Meteorological Satellite Receiving-processing System (SMSRPS) is specially developed for the navigation meteorological safeguard of the Antarctic exploration ship over the sea ice area of the forth Ocean. This system can suit to the climate environment of very high temperature high moisture and very low temperature - supersaturation; it has a self-protection ability to against the hurricane - force wind over force 12 and the strong vibration during icebreaking, as well as strong magnetic disturbance. It has two sets of receiving-imagery processing systems for polar orbit low-resolution and quasi-stationary high-solution satellites. The key creation Points of this system are as follows: 1. the active gyro-control stabilization platform and a mixed mounting system of three rotating a - B and x -- y axes are used. It solved the tracing difficulties both in the low elevation angle and very high elevation angle of polar-orbit satellite, even in the status of ship moving with continuously changing its poition, direction and ship roll and pitch. 2. Imagery processing subsystem. The newest BORLAND-- DELPHI language and PASCAL language pro gramming software are used under WINDOWS 95 environment. It has a dynamic positioning nested-grid system and electric mapping grid data system. It can show the latitude-longitude of any point on the map, and marks any object such as ship, station or island, and draws the route. It can monitor cloud and temperature, forest fire, anomalous change of ocean and land. It can output satellite cloud maps of 24 bit with very high clarity. This system is very advanced in technique for the whole structure with the features of small volume, light weight and very low cost. It suits to very bad climate and ocean environment. Its imagery process ing system has complete functions with high resolution and being very easy to operate. It is not only suit to land use, but also and specially to all kinds of ship over the sea. It can be extended to domestic and international use. This system played a very important role in the 14th Chinese Antarctic Exploration Navigation, and was introduced a broad attention paid by Chinese newspapers and TV Stations.