AIM: To estimate if and to what extent long acting octreotide (LAR) improves survival and quality of life in patients with advanced hepatocellular carcinoma (HCC). METHODS: A total of 127 cirrhotics, stages A-B, due t...AIM: To estimate if and to what extent long acting octreotide (LAR) improves survival and quality of life in patients with advanced hepatocellular carcinoma (HCC). METHODS: A total of 127 cirrhotics, stages A-B, due to chronic viral infections and with advanced HCC, were enrolled in the study. Scintigraphy with 111Indium labeled octreotide was performed in all cases. The patients with increased accumulation of radionuclear compound were randomized to receive either oral placebo only or octreotide/octreotide LAR only as follows: octreotide 0.5mg s.c. every 8 h for 6 wk, at the end of wk 4-8 octreotide LAR 20 mg i.m. and at the end of wk 12 and every 4 wk octreotide LAR 30mg i.m.. Follow-up was worked out monthly as well as the estimation of quality of life (QLQ-C30 questionnaire). Patients with negative somatostatin receptors (SSTR) detection were followed up in the same manner. RESULTS: Scintigraphy demonstrated SSTR in 61 patients. Thirty were randomized to receive only placebo and 31 only octreotide. A significantly higher survival time was observed for the octreotide group (49 ± 6 wk) as compared to the control group (28 ± 1 wk) and to the SSTR negative group (28 ± 2 wk), LR = 20.39, df = 2, P < 0.01. The octreotide group presented 68.5% lower hazard ratio [95% CI (47.4%-81.2%)]. During the f irst year, a 22%, 39% and 43% decrease in the QLQ-C30 score was observed in each group respectively.CONCLUSION: The proposed therapeutic approach has shown to improve the survival and quality of life in SSTR positive patients with advanced HCC.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Objective To investigate the relationship between expression of somatostatin receptors(SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-ste...Objective To investigate the relationship between expression of somatostatin receptors(SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation, and then SSTR1-5 mRNA levels in the differentiated first passage HSCs were detected by means of reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1-5 in normal as well as fibrotic liver was measured by immunohistochemical staining. Results SSTR mR-NA and SSTR could not be found in freshly isolated rat HSCs and normal rat liver. But SSTR1-3 mRNA appeared as HSCs became wholly activated, and SSTR1-3 could also be identified on the membrane of activated HSCs in the peri-sinusoid space, fibrous septa, etc. Conclusion The expression of SSTR1-3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.展开更多
The present study was undertaken to evaluate the effect of somatostatin (SS) receptor,a brain-gut peptide receptor which is capable of inhibiting central neurons, on the pathogenesis of hepatic encephalopathy (HE).By ...The present study was undertaken to evaluate the effect of somatostatin (SS) receptor,a brain-gut peptide receptor which is capable of inhibiting central neurons, on the pathogenesis of hepatic encephalopathy (HE).By means of radioligand binding assay, SS receptors in crude synaptosomal membrane of rat brains were investigated in a rat model of HE induced by partial hepatectomy following carbon tetrachloride intoxication and in controls. Binding to SS receptor was studied using125 I-SS as radiolgand Scatchard analysis of binding data was linear, yielding a dissociation constant (Kd) of 3.99 ±0.22 nmol/L and a maximal binding capacity (Bmax) of 238± 14.2 fmol/mg of protein in HE rats.Only increased Bmax values were observed (P< 0.005),while the Kd values were statistically unchanged (P>0.50),in HE rats as compared with those in controls.The results suggest that the changes of SS receptors in brains play a significant role in the pathogenesis of HE.The mechanism of HE induced by the alterations of SS receptors in the brains was discussed in this paper.展开更多
Somatostatin is a hormone that regulates multiple hormone releases and cell proliferation in the human body.It does this through a group of somatostatin receptors(SSTRs),of which there are five types:SSTR1-SSTR5.SSTR2...Somatostatin is a hormone that regulates multiple hormone releases and cell proliferation in the human body.It does this through a group of somatostatin receptors(SSTRs),of which there are five types:SSTR1-SSTR5.SSTR2 is the most well-known and is often targeted in treating neuroendocrine tumors and acromegaly.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator...Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this...The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling...Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.展开更多
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well ...Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.展开更多
Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the ...Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.展开更多
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce...BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.展开更多
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review...Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.展开更多
BACKGROUND Severe acute pancreatitis(SAP),a condition with rapid onset,critical condition and unsatisfactory prognosis,poses a certain threat to human health,warranting optimization of relevant treatment plans to impr...BACKGROUND Severe acute pancreatitis(SAP),a condition with rapid onset,critical condition and unsatisfactory prognosis,poses a certain threat to human health,warranting optimization of relevant treatment plans to improve treatment efficacy.AIM To evaluate the efficacy and safety of computerized tomography-guided the-rapeutic percutaneous puncture catheter drainage(CT-TPPCD)combined with somatostatin(SS)in the treatment of SAP.METHODS Forty-two SAP patients admitted to The Second Affiliated Hospital of Fujian Medical University from June 2020 to June 2023 were selected.On the basis of routine treatment,20 patients received SS therapy(control group)and 22 patients were given CT-TPPCD plus SS intervention(research group).The efficacy,safety(pancreatic fistula,intra-abdominal hemorrhage,sepsis,and organ dysfunction syndrome),abdominal bloating and pain relief time,bowel recovery time,hospital stay,inflammatory indicators(C-reactive protein,interleukin-6,and pro-calcitonin),and Acute Physiology and Chronic Health Evaluation(APACHE)II score of both groups were evaluated for comparison.RESULTS Compared with the control group,the research group had a markedly higher total effective rate,faster abdominal bloating and pain relief and bowel recovery,INTRODUCTION Pancreatitis,an inflammatory disease occurring in the pancreatic tissue,is classified as either acute or chronic and is associated with high morbidity and mortality,imposing a socioeconomic burden[1,2].The pathogenesis of this disease involves early protease activation,activation of nuclear factor kappa-B-related inflammatory reactions,and infiltration of immune cells[3].Severe acute pancreatitis(SAP)is a serious condition involving systemic injury and subsequent possible organ failure,accounting for 20%of all acute pancreatitis cases[4].SAP is also characterized by rapid onset,critical illness and unsatisfactory prognosis and is correlated with serious adverse events such as systemic inflammatory response syn-drome and acute lung injury,threatening the health of patients[5,6].Therefore,timely and effective therapeutic inter-ventions are of great significance for improving patient prognosis and ensuring therapeutic effects.Somatostatin(SS),a peptide hormone that can be secreted by endocrine cells and the central nervous system,is in-volved in the regulatory mechanism of glucagon and insulin synthesis in the pancreas[7].It has complex and pleiotropic effects on the gastrointestinal tract,which can inhibit the release of gastrointestinal hormones and negatively modulate the exocrine function of the stomach,pancreas and bile,while exerting a certain influence on the absorption of the di-gestive system[8,9].SS has shown certain clinical effectiveness when applied to SAP patients and can regulate the severity of SAP and immune inflammatory responses,and this regulation is related to its influence on leukocyte apoptosis and adhesion[10,11].Computerized tomography-guided therapeutic percutaneous puncture catheter drainage(CT-TPPCD)is a surgical procedure to collect lesion fluid and pus samples from necrotic lesions and perform puncture and drainage by means of CT image examination and precise positioning[12].In the research of Liu et al[13],CT-TPPCD applied to pa-tients undergoing pancreatic surgery contributes to not only good curative effects but also a low surgical risk.Baudin et al[14]also reported that CT-TPPCD has a clinical success rate of 64.6%in patients with acute infectious necrotizing pan-creatitis,with nonfatal surgery-related complications found in only two cases,suggesting that this procedure is clinically effective and safe in the treatment of the disease.In light of the limited studies on the efficacy and safety of SS plus CT-TPPCD in SAP treatment,this study performed a relevant analysis to improve clinical outcomes in SAP patients.展开更多
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of...In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.展开更多
Somatostatin,a naturally produced neuroprotective peptide,depresses excitatory neurotransmission and exerts anti-proliferative and anti-inflammatory effects on the retina.In this review,we summarize the progress of so...Somatostatin,a naturally produced neuroprotective peptide,depresses excitatory neurotransmission and exerts anti-proliferative and anti-inflammatory effects on the retina.In this review,we summarize the progress of somatostatin treatment of diabetic retinopathy through analysis of relevant studies published from February 2019 to February 2023 extracted from the PubMed and Google Scholar databases.Insufficient neuroprotection,which occurs as a consequence of declined expression or dysregulation of retinal somatostatin in the very early stages of diabetic retinopathy,triggers retinal neurovascular unit impairment and microvascular damage.Somatostatin replacement is a promising treatment for retinal neurodegeneration in diabetic retinopathy.Numerous pre-clinical and clinical trials of somatostatin analog treatment for early diabetic retinopathy have been initiated.In one such trial(EUROCONDOR),topical administration of somatostatin was found to exert neuroprotective effects in patients with pre-existing retinal neurodysfunction,but had no impact on the onset of diabetic retinopathy.Overall,we concluded that somatostatin restoration may be especially beneficial for the growing population of patients with early-stage retinopathy.In order to achieve early prevention of diabetic retinopathy initiation,and thereby salvage visual function before the appearance of moderate non-proliferative diabetic retinopathy,several issues need to be addressed.These include the needs to:a)update and standardize the retinal screening scheme to incorporate the detection of early neurodegeneration,b)identify patient subgroups who would benefit from somatostatin analog supplementation,c)elucidate the interactions of somatostatin,particularly exogenously-delivered somatostatin analogs,with other retinal peptides in the context of hyperglycemia,and d)design safe,feasible,low cost,and effective administration routes.展开更多
Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potentia...Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.展开更多
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea...Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.展开更多
文摘AIM: To estimate if and to what extent long acting octreotide (LAR) improves survival and quality of life in patients with advanced hepatocellular carcinoma (HCC). METHODS: A total of 127 cirrhotics, stages A-B, due to chronic viral infections and with advanced HCC, were enrolled in the study. Scintigraphy with 111Indium labeled octreotide was performed in all cases. The patients with increased accumulation of radionuclear compound were randomized to receive either oral placebo only or octreotide/octreotide LAR only as follows: octreotide 0.5mg s.c. every 8 h for 6 wk, at the end of wk 4-8 octreotide LAR 20 mg i.m. and at the end of wk 12 and every 4 wk octreotide LAR 30mg i.m.. Follow-up was worked out monthly as well as the estimation of quality of life (QLQ-C30 questionnaire). Patients with negative somatostatin receptors (SSTR) detection were followed up in the same manner. RESULTS: Scintigraphy demonstrated SSTR in 61 patients. Thirty were randomized to receive only placebo and 31 only octreotide. A significantly higher survival time was observed for the octreotide group (49 ± 6 wk) as compared to the control group (28 ± 1 wk) and to the SSTR negative group (28 ± 2 wk), LR = 20.39, df = 2, P < 0.01. The octreotide group presented 68.5% lower hazard ratio [95% CI (47.4%-81.2%)]. During the f irst year, a 22%, 39% and 43% decrease in the QLQ-C30 score was observed in each group respectively.CONCLUSION: The proposed therapeutic approach has shown to improve the survival and quality of life in SSTR positive patients with advanced HCC.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金Supported by the Scientific Development Programs of Science and Technology Commission Foundation of Shanghai (004119047).
文摘Objective To investigate the relationship between expression of somatostatin receptors(SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation, and then SSTR1-5 mRNA levels in the differentiated first passage HSCs were detected by means of reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1-5 in normal as well as fibrotic liver was measured by immunohistochemical staining. Results SSTR mR-NA and SSTR could not be found in freshly isolated rat HSCs and normal rat liver. But SSTR1-3 mRNA appeared as HSCs became wholly activated, and SSTR1-3 could also be identified on the membrane of activated HSCs in the peri-sinusoid space, fibrous septa, etc. Conclusion The expression of SSTR1-3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.
文摘The present study was undertaken to evaluate the effect of somatostatin (SS) receptor,a brain-gut peptide receptor which is capable of inhibiting central neurons, on the pathogenesis of hepatic encephalopathy (HE).By means of radioligand binding assay, SS receptors in crude synaptosomal membrane of rat brains were investigated in a rat model of HE induced by partial hepatectomy following carbon tetrachloride intoxication and in controls. Binding to SS receptor was studied using125 I-SS as radiolgand Scatchard analysis of binding data was linear, yielding a dissociation constant (Kd) of 3.99 ±0.22 nmol/L and a maximal binding capacity (Bmax) of 238± 14.2 fmol/mg of protein in HE rats.Only increased Bmax values were observed (P< 0.005),while the Kd values were statistically unchanged (P>0.50),in HE rats as compared with those in controls.The results suggest that the changes of SS receptors in brains play a significant role in the pathogenesis of HE.The mechanism of HE induced by the alterations of SS receptors in the brains was discussed in this paper.
文摘Somatostatin is a hormone that regulates multiple hormone releases and cell proliferation in the human body.It does this through a group of somatostatin receptors(SSTRs),of which there are five types:SSTR1-SSTR5.SSTR2 is the most well-known and is often targeted in treating neuroendocrine tumors and acromegaly.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the National Nature Science Foundation of China(No.81873694)the Key Research and Development Program of Hubei Province(No.2022BCA005)Knowledge Innovation Program of Wuhan Basic Research(No.2022020801010446).
文摘Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金This work was supported by the National Natural Science Foundation of China(32202278)the Chongqing Special Postdoctoral Science Foundation of Chinathe earmarked fund for China Agricultural Research System(CARS-26)。
文摘The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金This work was supported by grants from the National Natural Science Foundation of China(No.82304000).
文摘Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.
基金Supported by Fondo per gli Investimenti della Ricerca di Base(FIRB)(RBAP10MY35_002)by Ente Cassa di Risparmio di Firenzeby FiorGen ONLUS to Galli A
文摘Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
基金Supported by grants from the Ministerio de Ciencia y Tecnología, No. SAF2002-00851 and SAF2005-06089 and from Ministerio de Sanidad, No. Red G03-155 and PI050253 of Spain and by grants from Consellería de Empresa, Universidad y Ciencia, and de Sanidad, Generalitat Valenciana, No. Grupos03/001, GV04B-055, GV04B-012, GVS05/082 and ACOMP06/005 and AP-005/06
文摘Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.
基金The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of University of Campania Luigi Vanvitelli(Protocol code 795 on December 23,2019).
文摘BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.
基金the financial support provided by“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C020122022C02078)。
文摘Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors.
基金Supported by 2022 Fujian Medical University Qihang Fund General Project Plan,No.2022QH1120。
文摘BACKGROUND Severe acute pancreatitis(SAP),a condition with rapid onset,critical condition and unsatisfactory prognosis,poses a certain threat to human health,warranting optimization of relevant treatment plans to improve treatment efficacy.AIM To evaluate the efficacy and safety of computerized tomography-guided the-rapeutic percutaneous puncture catheter drainage(CT-TPPCD)combined with somatostatin(SS)in the treatment of SAP.METHODS Forty-two SAP patients admitted to The Second Affiliated Hospital of Fujian Medical University from June 2020 to June 2023 were selected.On the basis of routine treatment,20 patients received SS therapy(control group)and 22 patients were given CT-TPPCD plus SS intervention(research group).The efficacy,safety(pancreatic fistula,intra-abdominal hemorrhage,sepsis,and organ dysfunction syndrome),abdominal bloating and pain relief time,bowel recovery time,hospital stay,inflammatory indicators(C-reactive protein,interleukin-6,and pro-calcitonin),and Acute Physiology and Chronic Health Evaluation(APACHE)II score of both groups were evaluated for comparison.RESULTS Compared with the control group,the research group had a markedly higher total effective rate,faster abdominal bloating and pain relief and bowel recovery,INTRODUCTION Pancreatitis,an inflammatory disease occurring in the pancreatic tissue,is classified as either acute or chronic and is associated with high morbidity and mortality,imposing a socioeconomic burden[1,2].The pathogenesis of this disease involves early protease activation,activation of nuclear factor kappa-B-related inflammatory reactions,and infiltration of immune cells[3].Severe acute pancreatitis(SAP)is a serious condition involving systemic injury and subsequent possible organ failure,accounting for 20%of all acute pancreatitis cases[4].SAP is also characterized by rapid onset,critical illness and unsatisfactory prognosis and is correlated with serious adverse events such as systemic inflammatory response syn-drome and acute lung injury,threatening the health of patients[5,6].Therefore,timely and effective therapeutic inter-ventions are of great significance for improving patient prognosis and ensuring therapeutic effects.Somatostatin(SS),a peptide hormone that can be secreted by endocrine cells and the central nervous system,is in-volved in the regulatory mechanism of glucagon and insulin synthesis in the pancreas[7].It has complex and pleiotropic effects on the gastrointestinal tract,which can inhibit the release of gastrointestinal hormones and negatively modulate the exocrine function of the stomach,pancreas and bile,while exerting a certain influence on the absorption of the di-gestive system[8,9].SS has shown certain clinical effectiveness when applied to SAP patients and can regulate the severity of SAP and immune inflammatory responses,and this regulation is related to its influence on leukocyte apoptosis and adhesion[10,11].Computerized tomography-guided therapeutic percutaneous puncture catheter drainage(CT-TPPCD)is a surgical procedure to collect lesion fluid and pus samples from necrotic lesions and perform puncture and drainage by means of CT image examination and precise positioning[12].In the research of Liu et al[13],CT-TPPCD applied to pa-tients undergoing pancreatic surgery contributes to not only good curative effects but also a low surgical risk.Baudin et al[14]also reported that CT-TPPCD has a clinical success rate of 64.6%in patients with acute infectious necrotizing pan-creatitis,with nonfatal surgery-related complications found in only two cases,suggesting that this procedure is clinically effective and safe in the treatment of the disease.In light of the limited studies on the efficacy and safety of SS plus CT-TPPCD in SAP treatment,this study performed a relevant analysis to improve clinical outcomes in SAP patients.
基金supported by SIP-IPN,CONACYT (CB-168116)FIS/IMSS (FIS/IMSS/PROT/G11-2/1013)
文摘In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
基金supported by the Natural Science Foundation of Chongqing of China,Nos.cstc2020jcyj-msxmX0698(to YF),cstc2021jcyjbshX0147(to KO)a grant from Chongqing Jiangjin District Bureau of Science and Technology,No.Y2022017(to YF).
文摘Somatostatin,a naturally produced neuroprotective peptide,depresses excitatory neurotransmission and exerts anti-proliferative and anti-inflammatory effects on the retina.In this review,we summarize the progress of somatostatin treatment of diabetic retinopathy through analysis of relevant studies published from February 2019 to February 2023 extracted from the PubMed and Google Scholar databases.Insufficient neuroprotection,which occurs as a consequence of declined expression or dysregulation of retinal somatostatin in the very early stages of diabetic retinopathy,triggers retinal neurovascular unit impairment and microvascular damage.Somatostatin replacement is a promising treatment for retinal neurodegeneration in diabetic retinopathy.Numerous pre-clinical and clinical trials of somatostatin analog treatment for early diabetic retinopathy have been initiated.In one such trial(EUROCONDOR),topical administration of somatostatin was found to exert neuroprotective effects in patients with pre-existing retinal neurodysfunction,but had no impact on the onset of diabetic retinopathy.Overall,we concluded that somatostatin restoration may be especially beneficial for the growing population of patients with early-stage retinopathy.In order to achieve early prevention of diabetic retinopathy initiation,and thereby salvage visual function before the appearance of moderate non-proliferative diabetic retinopathy,several issues need to be addressed.These include the needs to:a)update and standardize the retinal screening scheme to incorporate the detection of early neurodegeneration,b)identify patient subgroups who would benefit from somatostatin analog supplementation,c)elucidate the interactions of somatostatin,particularly exogenously-delivered somatostatin analogs,with other retinal peptides in the context of hyperglycemia,and d)design safe,feasible,low cost,and effective administration routes.
基金supported by grants from the Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201010165)the Key Project of Scientific and Technologic Bureau of Guangzhou City(Grant No.202201020335).
文摘Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
基金This study was supported by grants from the Science and Technology Innovation Fund Project of Dalian(No.2021JJ13SN55).
文摘Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future.