期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Expression of caspase-3 and TRAIL receptors in CD4^+ and CD8^+ T cells of SLE patients 被引量:1
1
作者 游弋 郝飞 邓永键 《Journal of Medical Colleges of PLA(China)》 CAS 2006年第5期321-325,共5页
Objective: To study the expression of caspase-3 and tumor necrosis factor-related apoptosisinducing ligand (TRAIL) receptors in the CD4+ and CD8+ T cells of systemic lupus enythematosus (SLE) patients. Methods: RT-PCR... Objective: To study the expression of caspase-3 and tumor necrosis factor-related apoptosisinducing ligand (TRAIL) receptors in the CD4+ and CD8+ T cells of systemic lupus enythematosus (SLE) patients. Methods: RT-PCR was used to analyze the expression of caspase-3 and TRAIL receptors in CD4+ and CD8+ T cells of SLE patients and normal subjects. Results: The death domain-containing TRAIL-R1/R2 as well as 'decoy' TRAIL-R3/R4 were co-expressed in majority of CD4+ and CD8+ T cells in both SLE patients and normal subjects. The CD8+ T cells from SLE patients showed significantly higher expression of caspase-3 and TRAIL-R2 than those from normal subjects,and the expression was correlated with the activity of the disease. Conclusion: The TRAIL-R2 signal pathway might contribute to the apoptosis of T cells in SLE. 展开更多
关键词 LUPUS erythematosus systemic CASPASE-3 tumor NECROSIS factor-related apoptosis-inducing ligand receptors
下载PDF
Targeting androgen receptor and trail: a novel treatment paradigm for breast cancer
2
作者 Ya-ping TU Yan XIE +2 位作者 Peter W ABEL Tao-tao WEI Xu LUO 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第10期954-954,共1页
OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells ... OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells are resistant to TRAIL-induced apoptosis.Our objectives are to investigate the underlying molecular mechanisms and to develop strategies to overcome such resistance.METHODS To identify modulators of TRAIL-induced apoptosis,we carried out a genome wide si RNA screen.To validate the screening result,we either silenced or overexpressed the identified genes in various breast cancer cells and changes in growth and TRAIL-induced cell apoptosis were determined in vitro and in an orthotopic xenograft mouse model.Finally,we investigated whether small molecules targeting the identified genes improve the effectiveness of TRAIL-therapy.RESULTS We unexpectedly identified androgen receptor(AR)to be responsible for TRAIL resistance.While AR is classically viewed as the key factor in prostate cancer progression,we found that AR expression levels were markedly elevated in human invasive breast cancer specimens including triple-negative breast cancers(TNBC)that are highly aggressive with poor prognosis.Importantly,breast cancer cell lines express different levels of AR that correlated with their TRAIL resistance.AR overexpression in MDA-MB-231 and MDA-MB-436 cells suppressed the TRAIL sensitivity whereas knockdown of AR rendered MCF-7 and MDA-MB-453 cells sensitive to TRAIL-induced apoptosis.AR overexpression also induced TRAIL resistance in breast tumors in vivo.Further,we observed an upregulation of the TRAIL receptor,death receptor 5(DR5)in breast cancer cells,following the removal or inhibition of AR by its antagonists Casodex and MDV3100.Treatment with AR antagonists also enhanced TRAIL-induced breast cancer cell apoptosis.CONCLUSION AR signaling suppresses TRAIL-induced breast cancer cell apoptosis,in part,by suppressing DR5 expression,and a combination of AR antagonists together with TRAIL may be a novel and effective therapy for TNBC. 展开更多
关键词 tnf-related apoptosis-inducing ligand APOPTOSIS resistance breast cancer death receptor 5 androgen receptor ANTAGONISTS
下载PDF
Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell
3
作者 ZHU Shaobo YU Aixi ZHANG Zhongning WU Gang 《Wuhan University Journal of Natural Sciences》 CAS 2007年第6期1148-1152,共5页
This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cel... This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000, 2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%, 50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 gg/mL TRAIL for 6 h, obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma. 展开更多
关键词 TRAIL tnf-related apoptosis-inducing ligand osteosarcoma cell line APOPTOSIS
下载PDF
EGCG Enhances TRAIL-mediated Apoptosis in Human Melanoma A375 Cell Line 被引量:2
4
作者 沈琴 田芬 +4 位作者 蒋萍 李艳秋 张丽 卢静静 李家文 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第6期771-775,共5页
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Epigallocatechin-3-gallate (EGCG) is a polyphenolic constituent of green tea. In this study, inhibitory effect of c... Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Epigallocatechin-3-gallate (EGCG) is a polyphenolic constituent of green tea. In this study, inhibitory effect of combined use of EGCG and TRAIL on human melanoma A375 cells was examined and the possible mechanism investigated. The cells were divided into 4 groups: control group, EGCG group (EGCG: 10, 20 μg/mL), TRAIL group (TRAIL: 25 ng/mL) and EGCG+TRAIL group (combined group). The growth inhibition was measured in the A375 cells treated with different concentrations of TRAIL ((25, 50, 75, 100, 125, 150 ng/mL) by MTT assay. The apoptosis was assessed by flow cytometry. The expressions of DR4 and DR5 were detected by flow cytometry and western blotting. The activities of caspase-8 and caspase-3 were determined by colorimetric assay. The results showed that TRAIL could dose-dependently inhibit the growth of A375 cells and the IC50 of TRAIL was 150 ng/mL. The apoptosis rate was 11.8% in the TRAIL group, 5%–7% in the EGCG group and 48.9%–59.1% in the combined group. Significant difference was found in the apoptosis rate between the combined group and the EGCG or TRAIL group (P〈0.05 for each). The expression of DR4 instead of DR5 was significantly increased in the EGCG group. The activity of caspase-3 rather than caspase-8 was substantially enhanced in the EGCG group. These results suggest that EGCG is useful for the TRAIL-based treatment for melanoma. 展开更多
关键词 epigallocatechin-3-gallate tumor necrosis factor-related apoptosis-inducing ligand death receptor 4 death receptor 5 apoptosis MELANOMA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部