A sound understanding of groundwater recharged from various sources occurring at different time scales is crucial for water management in arid and semi-arid river basins. Groundwater recharge sources and their geochem...A sound understanding of groundwater recharged from various sources occurring at different time scales is crucial for water management in arid and semi-arid river basins. Groundwater recharge sources and their geochemical evolution are investigated for the Heihe River Basin (HRB) in northwest China on the basis of a comprehensive compilation of geochemical and isotopic data. Geochemical mass- balance modeling indicates that mountain-block recharge accounts for a small fraction (generally less than 5%) of the shallow and deep groundwater sustaining the oasis, whereas infiltration of rivers and irrigation water contribute most of the groundwater recharge. Dedolomitization is the primary process responsible for the changes in groundwater chemical and carbon isotope compositions from the piedmont to the groundwater discharge zone, where the dedolomitization is very likely enhanced by modern agricultural activities affecting the shallow groundwater quality. Analysis of radioactive isotopes suggests that these primary recharge sources occur at two different time scales. Radiocarbon-derived groundwater age profiles indicate a recharge rate of approximately 12 mm/year, which probably occurred during 2000-7000 years B.P., corresponding to the mid-Holocene humid period. The recharge of young groundwater on the tritium-dated time scale is much higher, about 360 mm/year in the oasis region. Infiltration from irrigation canals and irrigation return flow are the primary contributors to the increased young groundwater recharge. This study suggests that groundwater chemistry in the HRB has been influenced by the complex interaction between natural and human-induced geochemical processes and that anthropogenic effects have played a more significant role in terms of both groundwater quantity and quality.展开更多
Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, ...Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, groundwater flow field and field survey. Then eight recharge and discharge modes on the relationships are put forward and the hydraulic characteristics of the modes are analysed, which provides a scientific basis for quantitatively simulating and assessing the conversion relationships, maintenance mechanism of the Yellow River and the regeneration ability of the groundwater in the area.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91225301 and 91425303)
文摘A sound understanding of groundwater recharged from various sources occurring at different time scales is crucial for water management in arid and semi-arid river basins. Groundwater recharge sources and their geochemical evolution are investigated for the Heihe River Basin (HRB) in northwest China on the basis of a comprehensive compilation of geochemical and isotopic data. Geochemical mass- balance modeling indicates that mountain-block recharge accounts for a small fraction (generally less than 5%) of the shallow and deep groundwater sustaining the oasis, whereas infiltration of rivers and irrigation water contribute most of the groundwater recharge. Dedolomitization is the primary process responsible for the changes in groundwater chemical and carbon isotope compositions from the piedmont to the groundwater discharge zone, where the dedolomitization is very likely enhanced by modern agricultural activities affecting the shallow groundwater quality. Analysis of radioactive isotopes suggests that these primary recharge sources occur at two different time scales. Radiocarbon-derived groundwater age profiles indicate a recharge rate of approximately 12 mm/year, which probably occurred during 2000-7000 years B.P., corresponding to the mid-Holocene humid period. The recharge of young groundwater on the tritium-dated time scale is much higher, about 360 mm/year in the oasis region. Infiltration from irrigation canals and irrigation return flow are the primary contributors to the increased young groundwater recharge. This study suggests that groundwater chemistry in the HRB has been influenced by the complex interaction between natural and human-induced geochemical processes and that anthropogenic effects have played a more significant role in terms of both groundwater quantity and quality.
文摘Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, groundwater flow field and field survey. Then eight recharge and discharge modes on the relationships are put forward and the hydraulic characteristics of the modes are analysed, which provides a scientific basis for quantitatively simulating and assessing the conversion relationships, maintenance mechanism of the Yellow River and the regeneration ability of the groundwater in the area.