A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary jud...A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.展开更多
Singly connected Hall plates with N peripheral contacts can be mapped onto the upper half of the z-plane by a conformal transformation. Recently, Homentcovschi and Bercia derived the General Formula for the electric f...Singly connected Hall plates with N peripheral contacts can be mapped onto the upper half of the z-plane by a conformal transformation. Recently, Homentcovschi and Bercia derived the General Formula for the electric field in this region. We present an alternative intuitive derivation based on conformal mapping arguments. Then we apply the General Formula to complementary Hall plates, where contacts and insulating boundaries are swapped. The resistance matrix of the complementary device at reverse magnetic field is expressed in terms of the conductance matrix of the original device at non-reverse magnetic field. These findings are used to prove several symmetry properties of Hall plates and their complementary counterparts at arbitrary magnetic field.展开更多
文摘A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.
文摘Singly connected Hall plates with N peripheral contacts can be mapped onto the upper half of the z-plane by a conformal transformation. Recently, Homentcovschi and Bercia derived the General Formula for the electric field in this region. We present an alternative intuitive derivation based on conformal mapping arguments. Then we apply the General Formula to complementary Hall plates, where contacts and insulating boundaries are swapped. The resistance matrix of the complementary device at reverse magnetic field is expressed in terms of the conductance matrix of the original device at non-reverse magnetic field. These findings are used to prove several symmetry properties of Hall plates and their complementary counterparts at arbitrary magnetic field.