An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu...An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.展开更多
The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction ...The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51105386)the National Deep-Sea Technology Project of Development and Research(Grant No.DYXM-115-04-02-01)the Fundamental Research Funds for the Central Universities(Grant No.2011QNZT058)
文摘An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.
基金This work was partially supported bythe National Natural Science Foundation of China (Grant No. 69789801) the Natural Science Foundation of Guangdong Province (Grant No. 970842) National Hi-Tech Committee.
文摘The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.