期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
1
作者 詹海潮 陈兵 +3 位作者 彭怡翔 王乐 王文鼐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期364-369,共6页
Orbital angular momentum(OAM)has the characteristics of mutual orthogonality between modes,and has been applied to underwater wireless optical communication(UWOC)systems to increase the channel capacity.In this work,w... Orbital angular momentum(OAM)has the characteristics of mutual orthogonality between modes,and has been applied to underwater wireless optical communication(UWOC)systems to increase the channel capacity.In this work,we propose a diffractive deep neural network(DDNN)based OAM mode recognition scheme,where the DDNN is trained to capture the features of the intensity distribution of the OAM modes and output the corresponding azimuthal indices and radial indices.The results show that the proposed scheme can recognize the azimuthal indices and radial indices of the OAM modes accurately and quickly.In addition,the proposed scheme can resist weak oceanic turbulence(OT),and exhibit excellent ability to recognize OAM modes in a strong OT environment.The DDNN-based OAM mode recognition scheme has potential applications in UWOC systems. 展开更多
关键词 orbital angular momentum diffractive deep neural network mode recognition oceanic turbulence
下载PDF
Integral Real-time Locomotion Mode Recognition Based on GA-CNN for Lower Limb Exoskeleton
2
作者 Jiaqi Wang Dongmei Wu +4 位作者 Yongzhuo Gao Xinrui Wang Xiaoqi Li Guoqiang Xu Wei Dong 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1359-1373,共15页
The wearable lower limb exoskeleton is a typical human-in-loop human–robot coupled system,which conducts natural and close cooperation with the human by recognizing human locomotion timely.Requiring subject-specific ... The wearable lower limb exoskeleton is a typical human-in-loop human–robot coupled system,which conducts natural and close cooperation with the human by recognizing human locomotion timely.Requiring subject-specific training is the main challenge of the existing approaches,and most methods have the problem of insufficient recognition.This paper proposes an integral subject-adaptive real-time Locomotion Mode Recognition(LMR)method based on GA-CNN for a lower limb exoskeleton system.The LMR method is a combination of Convolutional Neural Networks(CNN)and Genetic Algorithm(GA)-based multi-sensor information selection.To improve network performance,the hyper-parameters are optimized by Bayesian optimization.An exoskeleton prototype system with multi-type sensors and novel sensing-shoes is used to verify the proposed method.Twelve locomotion modes,which composed an integral locomotion system for the daily application of the exoskeleton,can be recognized by the proposed method.According to a series of experiments,the recognizer shows strong comprehensive abilities including high accuracy,low delay,and sufficient adaption to different subjects. 展开更多
关键词 Locomotion mode recognition Gait mode detection Lower limb exoskeleton Convolutional neural network Genetic algorithm Bionic design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部