Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as ...Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.展开更多
CME is one of the important events in the sun-earth system as it can induce geomagnetic disturbance and an associated space environment effect.It is of special significance to predict whether CME will reach the Earth ...CME is one of the important events in the sun-earth system as it can induce geomagnetic disturbance and an associated space environment effect.It is of special significance to predict whether CME will reach the Earth and when it will arrive.In this paper,we firstly built a new multiple association list for 215 different events with 18 characteristics including CME features,eruption region coordinates and solar wind parameters.Based on the CME list,we designed a novel model based on the principle of the recommendation algorithm to predict the arrival time of CMEs.According to the two commonly used calculation methods in the recommendation system,cosine distance and Euclidean distance,a controlled trial was carried out respectively.Every feature has been found to have its own appropriate weight.The error analysis indicates the result using the Euclidean distance similarity is much better than that using cosine distance similarity.The mean absolute error and root mean square error of test data in the Euclidean distance are 11.78 and 13.77 h,close to the average level of other CME models issued in the CME scoreboard,which verifies the effectiveness of the recommendation algorithm.This work gives a new endeavor using the recommendation algorithm,and is expected to induce other applications in space weather prediction.展开更多
基金supported by the Natural Science Foundation of Ningxia Province(No.2023AAC03316)the Ningxia Hui Autonomous Region Education Department Higher Edu-cation Key Scientific Research Project(No.NYG2022051)the North Minzu University Graduate Innovation Project(YCX23146).
文摘Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.
基金supported by a NASA Heliophysics Guest Investigator Grantsupported by the National Natural Science Foundation of China (Grant Nos.12071166 and 42074224)。
文摘CME is one of the important events in the sun-earth system as it can induce geomagnetic disturbance and an associated space environment effect.It is of special significance to predict whether CME will reach the Earth and when it will arrive.In this paper,we firstly built a new multiple association list for 215 different events with 18 characteristics including CME features,eruption region coordinates and solar wind parameters.Based on the CME list,we designed a novel model based on the principle of the recommendation algorithm to predict the arrival time of CMEs.According to the two commonly used calculation methods in the recommendation system,cosine distance and Euclidean distance,a controlled trial was carried out respectively.Every feature has been found to have its own appropriate weight.The error analysis indicates the result using the Euclidean distance similarity is much better than that using cosine distance similarity.The mean absolute error and root mean square error of test data in the Euclidean distance are 11.78 and 13.77 h,close to the average level of other CME models issued in the CME scoreboard,which verifies the effectiveness of the recommendation algorithm.This work gives a new endeavor using the recommendation algorithm,and is expected to induce other applications in space weather prediction.