Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ...More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.展开更多
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is fini...In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is finished by utilizing machine learning strategies.A suggestion framework is an interaction of data sifting framework,which is utilized to foresee the“rating”or“inclination”given by the different clients.The expectation depends on past evaluations,history,interest,IMDB rating,and so on.This can be carried out by utilizing collective and substance-based separating approaches which utilize the data given by the different clients,examine them,and afterward suggest the video that suits the client at that specific time.The required datasets for the video are taken from Grouplens.This recommender framework is executed by utilizing Python Programming Language.For building this video recommender framework,two calculations are utilized,for example,K-implies Clustering and KNN grouping.K-implies is one of the unaided AI calculations and the fundamental goal is to bunch comparable sort of information focuses together and discover the examples.For that K-implies searches for a steady‘k'of bunches in a dataset.A group is an assortment of information focuses collected due to specific similitudes.K-Nearest Neighbor is an administered learning calculation utilized for characterization,with the given information;KNN can group new information by examination of the‘k'number of the closest information focuses.The last qualities acquired are through bunching qualities and root mean squared mistake,by using this algorithm we can recommend videos more appropriately based on user previous records and ratings.展开更多
This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of co...This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].展开更多
Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game ...Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game design elements,accompanying pertinent pedagogical objectives of interest.This paper focuses on a cross-platform,innovative,gamified,educational learning system product,funded by the Hellenic Republic Ministry of Development and Investments:howlearn.By applying gamification techniques,in 3D virtual environments,within which,learners fulfil STEAM(Science,Technology,Engineering,Arts and Mathematics)-related Experiments(Simulations,Virtual Labs,Interactive Storytelling Scenarios,Decision Making Case Studies),howlearn covers learners’subject material,while,simultaneously,functioning,as an Authoring Gamification Tool and as a Game Metrics Repository;users’metrics are being,dynamically,analyzed,through Machine Learning Algorithms.Consequently,the System learns from the data and learners receive Personalized Feedback Report Dashboards of their overall performance,weaknesses,interests and general class competency.A Custom Recommendation System(Collaborative Filtering,Content-Based Filtering)then supplies suggestions,representing the best matches between Experiments and learners,while also focusing on the reinforcement of the learning weaknesses of the latter.Ultimately,by optimizing the Accuracy,Performance and Predictive capability of the Personalized Feedback Report,we provide learners with scientifically valid performance assessments and educational recommendations,thence intensifying sustainable,learner-centered education.展开更多
The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this da...The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.展开更多
GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community infor...GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community informationand the fact that the scoring metrics used to calculate the matching degree between developers and repositoriesare developed manually and rely too much on human experience, leading to poor recommendation results. Toaddress these problems, we design a questionnaire to investigate which repository information developers focus onand propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solveinsufficient information utilization in open-source communities, we construct a Developer-Repository networkusing four types of behavioral data that best reflect developers’ programming preferences and extract features ofdevelopers and repositories from the repository content that developers focus on. Then, we design a repositoryrecommendation model based on a multi-layer graph convolutional network to avoid the manual formulation ofscoringmetrics. Thismodel takes the Developer-Repository network, developer features and repository features asinputs, and recommends the top-k repositories that developers are most likely to be interested in by learning theirpreferences. We have verified the proposed GCNRec on the dataset, and by comparing it with other open-sourcerepository recommendation methods, GCNRec achieves higher precision and hit rate.展开更多
Web usage mining,content mining,and structure mining comprise the web mining process.Web-Page Recommendation(WPR)development by incor-porating Data Mining Techniques(DMT)did not include end-users with improved perform...Web usage mining,content mining,and structure mining comprise the web mining process.Web-Page Recommendation(WPR)development by incor-porating Data Mining Techniques(DMT)did not include end-users with improved performance in the obtainedfiltering results.The cluster user profile-based clustering process is delayed when it has a low precision rate.Markov Chain Monte Carlo-Dynamic Clustering(MC2-DC)is based on the User Behavior Profile(UBP)model group’s similar user behavior on a dynamic update of UBP.The Reversible-Jump Concept(RJC)reviews the history with updated UBP and moves to appropriate clusters.Hamilton’s Filtering Framework(HFF)is designed tofilter user data based on personalised information on automatically updated UBP through the Search Engine(SE).The Hamilton Filtered Regime Switching User Query Probability(HFRSUQP)works forward the updated UBP for easy and accuratefiltering of users’interests and improves WPR.A Probabilistic User Result Feature Ranking based on Gaussian Distribution(PURFR-GD)has been developed to user rank results in a web mining process.PURFR-GD decreases the delay time in the end-to-end workflow for SE personalization in various meth-ods by using the Gaussian Distribution Function(GDF).The theoretical analysis and experiment results of the proposed MC2-DC method automatically increase the updated UBP accuracy by 18.78%.HFRSUQP enabled extensive Maximize Log-Likelihood(ML-L)increases to 15.28%of User Personalized Information Search Retrieval Rate(UPISRT).For feature ranking,the PURFR-GD model defines higher Classification Accuracy(CA)and Precision Ratio(PR)while uti-lising minimum Execution Time(ET).Furthermore,UPISRT's ranking perfor-mance has improved by 20%.展开更多
The rising use of mobile technology and smart gadgets in the field of health has had a significant impact on the global community.Health professionals are increasingly making use of the benefits of these technologies,...The rising use of mobile technology and smart gadgets in the field of health has had a significant impact on the global community.Health professionals are increasingly making use of the benefits of these technologies,resulting in a major improvement in health care both in and out of clinical settings.The Internet of Things(IoT)is a new internet revolution that is a rising research area,particularly in health care.Healthcare Monitoring Systems(HMS)have progressed rapidly as the usage of Wearable Sensors(WS)and smartphones have increased.The existing framework of conventional telemedicine’s store-and-forward method has some issues,including the need for a nearby health centre with dedicated employees and medical devices to prepare patient reports.Patients’health can be continuously monitored using advanced WS that can be fitted or embedded in their bodies.This research proposes an innovative and smart HMS,which is built using recent technologies such as the IoT and Machine Learning(ML).In this study,we present an innovative and intelligent HMS based on cutting-edge technologies such as the IoT and Deep Learning(DL)+Restricted Boltzmann Machine(RBM).This DL+RBM model is clever enough to detect and process a patient’s data using a medical Decision Support System(DSS)to determine whether the patient is suffering from a major health problem and treat it accordingly.The recommended system’s behavior is increasingly investigated using a cross-validation test that determines various demographically relevant standard measures.Through a healthcare DSS,this framework is clever enough to detect and analyze a patient’s data.Experiment results further reveal that the proposed system is efficient and clever enough to deliver health care.The data reported in this study demonstrate the notion.This device is a low-cost solution for people living in distant places;anyone can use it to determine if they have a major health problem and seek treatment by contacting nearby hospitals.展开更多
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. ...The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.展开更多
There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This ...There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.展开更多
An integrated implementation framework of an intelligent recommendation system for outdoor video advertising is proposed, which is based on the analysis of audiences' characteristics. Firstly, the images of the scene...An integrated implementation framework of an intelligent recommendation system for outdoor video advertising is proposed, which is based on the analysis of audiences' characteristics. Firstly, the images of the scene and the people who view the video advertisements are captured by the net- work camera deployed on the video advertising terminal side. Then audiences' characteristics can be obtained by applying computer vision technologies : face detection, face tracking, gender recogni- tion and age estimation. Finally, an intelligent recommendation algorithm is designed to decide the most fitting video ads for each terminal according to multi-dimensional statistical information of its reover, a novel face detection method and a new face tracking method have been proposed to meet the practical requirements of the system, of which the average Fl-score is O. 988 and 0. 951 respec- tively.展开更多
A blockchain is a digitized, decentralized, public ledger of all cryptocurrency transactions. The blockchain is transforming industries by enabling innovative business practices. Its revolutionary power has permeated ...A blockchain is a digitized, decentralized, public ledger of all cryptocurrency transactions. The blockchain is transforming industries by enabling innovative business practices. Its revolutionary power has permeated areas such as bank-ing, financing, trading, manufacturing, supply chain management, healthcare, and government. Blockchain and the Internet of Things (BIOT) apply the us-age of blockchain in the inter-IOT communication system, therefore, security and privacy factors are achievable. The integration of blockchain technology and IoT creates modern decentralized systems. The BIOT models can be ap-plied by various industries including e-commerce to promote decentralization, scalability, and security. This research calls for innovative and advanced re-search on Blockchain and recommendation systems. We aim at building a se-cure and trust-based system using the advantages of blockchain-supported secure multiparty computation by adding smart contracts with the main blockchain protocol. Combining the recommendation systems and blockchain technology allows online activities to be more secure and private. A system is constructed for enterprises to collaboratively create a secure database and host a steadily updated model using smart contract systems. Learning case studies include a model to recommend movies to users. The accuracy of models is evaluated by an incentive mechanism that offers a fully trust-based recom-mendation system with acceptable performance.展开更多
A collaborative filtering-based recommendation system has been an integral part of e-commerce and e-servicing.To keep the recommendation systems reliable,authentic,and superior,the security of these systems is very cr...A collaborative filtering-based recommendation system has been an integral part of e-commerce and e-servicing.To keep the recommendation systems reliable,authentic,and superior,the security of these systems is very crucial.Though the existing shilling attack detection methods in collaborative filtering are able to detect the standard attacks,in this paper,we prove that they fail to detect a new or unknown attack.We develop a new attack model,named Obscure attack,with unknown features and observed that it has been successful in biasing the overall top-N list of the target users as intended.The Obscure attack is able to push target items to the top-N list as well as remove the actual rated items from the list.Our proposed attack is more effective at a smaller number of k in top-k similar user as compared to other existing attacks.The effectivity of the proposed attack model is tested on the MovieLens dataset,where various classifiers like SVM,J48,random forest,and naïve Bayes are utilized.展开更多
Most real estate agents develop new objects by visiting unfamiliar clients, distributing leaflets, or browsing other real estate trading website platforms,whereas consumers often rely on websites to search and compar...Most real estate agents develop new objects by visiting unfamiliar clients, distributing leaflets, or browsing other real estate trading website platforms,whereas consumers often rely on websites to search and compare prices when purchasing real property. In addition to being time consuming, this search processrenders it difficult for agents and consumers to understand the status changes ofobjects. In this study, Python is used to write web crawler and image recognitionprograms to capture object information from the web pages of real estate agents;perform data screening, arranging, and cleaning;compare the text of real estateobject information;as well as integrate and use the convolutional neural networkof a deep learning algorithm to implement image recognition. In this study, dataare acquired from two business-to-consumer real estate agency networks, i.e., theSinyi real estate agent and the Yungching real estate agent, and one consumer-toconsumer real estate agency platform, i.e., the, FiveNineOne real estate agent. Theresults indicate that text mining can reveal the similarities and differences betweenthe objects, list the number of days that the object has been available for sale onthe website, and provide the price fluctuations and fluctuation times during thesales period. In addition, 213,325 object amplification images are used as a database for training using deep learning algorithms, and the maximum image recognition accuracy achieved is 95%. The dynamic recommendation system for realestate objects constructed by combining text mining and image recognition systems enables developers in the real estate industry to understand the differencesbetween their commodities and other businesses in approximately 2 min, as wellas rapidly determine developable objects via comparison results provided by thesystem. Meanwhile, consumers require less time in searching and comparingprices after they have understood the commodity dynamic information, therebyallowing them to use the most efficient approach to purchase real estate objectsof their interest.展开更多
In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is th...In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is that the consumer’s information demand ascan be thought of consumer’s information demand is leading to trigger the power of consumer network information search behavior, whenconsumer is willing to buy goods, in a certain task under the infl uence of factors, environmental factors, individual factors, consumers and thetask object interaction to form the demand of consumer cognition. Under this basis, this paper proposes the new idea on the related issues thatwill solve the related challenges.展开更多
According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different sy...According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different system level; then design in detail system process from the front and back office systems, and in detail descript the key data in the database and several tables. Finally, the paper respectively tests several main modules of onstage system and the backstage system. The paper designed electronic commerce recommendation based on personalized recommendation system, it can complete the basic function of the electronic commerce system, also can be personalized commodity recommendation for different users, the user data information and the user' s shopping records.展开更多
Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces projec...Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces project attribute fuzzy matrix,measures the project relevance through fuzzy clustering method,and classifies all project attributes.Then,the weight of the project relevance is introduced in the user similarity calculation,so that the nearest neighbor search is more accurate.In the prediction scoring section,considering the change of user interest with time,it is proposed to use the time weighting function to improve the influence of the time effect of the evaluation,so that the newer evaluation information in the system has a relatively large weight.The experimental results show that the improved algorithm improves the recommendation accuracy and improves the recommendation quality.展开更多
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
基金supported by the National Natural Science Foundation of China(Grant No.62277032,62231017,62071254)Education Scientific Planning Project of Jiangsu Province(Grant No.B/2022/01/150)Jiangsu Provincial Qinglan Project,the Special Fund for Urban and Rural Construction and Development in Jiangsu Province.
文摘More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
文摘In the realm of contemporary artificial intelligence,machine learning enables automation,allowing systems to naturally acquire and enhance their capabilities through learning.In this cycle,Video recommendation is finished by utilizing machine learning strategies.A suggestion framework is an interaction of data sifting framework,which is utilized to foresee the“rating”or“inclination”given by the different clients.The expectation depends on past evaluations,history,interest,IMDB rating,and so on.This can be carried out by utilizing collective and substance-based separating approaches which utilize the data given by the different clients,examine them,and afterward suggest the video that suits the client at that specific time.The required datasets for the video are taken from Grouplens.This recommender framework is executed by utilizing Python Programming Language.For building this video recommender framework,two calculations are utilized,for example,K-implies Clustering and KNN grouping.K-implies is one of the unaided AI calculations and the fundamental goal is to bunch comparable sort of information focuses together and discover the examples.For that K-implies searches for a steady‘k'of bunches in a dataset.A group is an assortment of information focuses collected due to specific similitudes.K-Nearest Neighbor is an administered learning calculation utilized for characterization,with the given information;KNN can group new information by examination of the‘k'number of the closest information focuses.The last qualities acquired are through bunching qualities and root mean squared mistake,by using this algorithm we can recommend videos more appropriately based on user previous records and ratings.
文摘This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].
文摘Gamification in education enables for the holistic optimization of the learning process,empowering learners to ameliorate their digital,cognitive,emotional and social skills,via their active experimentation with game design elements,accompanying pertinent pedagogical objectives of interest.This paper focuses on a cross-platform,innovative,gamified,educational learning system product,funded by the Hellenic Republic Ministry of Development and Investments:howlearn.By applying gamification techniques,in 3D virtual environments,within which,learners fulfil STEAM(Science,Technology,Engineering,Arts and Mathematics)-related Experiments(Simulations,Virtual Labs,Interactive Storytelling Scenarios,Decision Making Case Studies),howlearn covers learners’subject material,while,simultaneously,functioning,as an Authoring Gamification Tool and as a Game Metrics Repository;users’metrics are being,dynamically,analyzed,through Machine Learning Algorithms.Consequently,the System learns from the data and learners receive Personalized Feedback Report Dashboards of their overall performance,weaknesses,interests and general class competency.A Custom Recommendation System(Collaborative Filtering,Content-Based Filtering)then supplies suggestions,representing the best matches between Experiments and learners,while also focusing on the reinforcement of the learning weaknesses of the latter.Ultimately,by optimizing the Accuracy,Performance and Predictive capability of the Personalized Feedback Report,we provide learners with scientifically valid performance assessments and educational recommendations,thence intensifying sustainable,learner-centered education.
文摘The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.
基金supported by Special Funds for the Construction of an Innovative Province of Hunan,No.2020GK2028.
文摘GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community informationand the fact that the scoring metrics used to calculate the matching degree between developers and repositoriesare developed manually and rely too much on human experience, leading to poor recommendation results. Toaddress these problems, we design a questionnaire to investigate which repository information developers focus onand propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solveinsufficient information utilization in open-source communities, we construct a Developer-Repository networkusing four types of behavioral data that best reflect developers’ programming preferences and extract features ofdevelopers and repositories from the repository content that developers focus on. Then, we design a repositoryrecommendation model based on a multi-layer graph convolutional network to avoid the manual formulation ofscoringmetrics. Thismodel takes the Developer-Repository network, developer features and repository features asinputs, and recommends the top-k repositories that developers are most likely to be interested in by learning theirpreferences. We have verified the proposed GCNRec on the dataset, and by comparing it with other open-sourcerepository recommendation methods, GCNRec achieves higher precision and hit rate.
基金Supporting this study through Taif University Researchers Supporting Project number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘Web usage mining,content mining,and structure mining comprise the web mining process.Web-Page Recommendation(WPR)development by incor-porating Data Mining Techniques(DMT)did not include end-users with improved performance in the obtainedfiltering results.The cluster user profile-based clustering process is delayed when it has a low precision rate.Markov Chain Monte Carlo-Dynamic Clustering(MC2-DC)is based on the User Behavior Profile(UBP)model group’s similar user behavior on a dynamic update of UBP.The Reversible-Jump Concept(RJC)reviews the history with updated UBP and moves to appropriate clusters.Hamilton’s Filtering Framework(HFF)is designed tofilter user data based on personalised information on automatically updated UBP through the Search Engine(SE).The Hamilton Filtered Regime Switching User Query Probability(HFRSUQP)works forward the updated UBP for easy and accuratefiltering of users’interests and improves WPR.A Probabilistic User Result Feature Ranking based on Gaussian Distribution(PURFR-GD)has been developed to user rank results in a web mining process.PURFR-GD decreases the delay time in the end-to-end workflow for SE personalization in various meth-ods by using the Gaussian Distribution Function(GDF).The theoretical analysis and experiment results of the proposed MC2-DC method automatically increase the updated UBP accuracy by 18.78%.HFRSUQP enabled extensive Maximize Log-Likelihood(ML-L)increases to 15.28%of User Personalized Information Search Retrieval Rate(UPISRT).For feature ranking,the PURFR-GD model defines higher Classification Accuracy(CA)and Precision Ratio(PR)while uti-lising minimum Execution Time(ET).Furthermore,UPISRT's ranking perfor-mance has improved by 20%.
文摘The rising use of mobile technology and smart gadgets in the field of health has had a significant impact on the global community.Health professionals are increasingly making use of the benefits of these technologies,resulting in a major improvement in health care both in and out of clinical settings.The Internet of Things(IoT)is a new internet revolution that is a rising research area,particularly in health care.Healthcare Monitoring Systems(HMS)have progressed rapidly as the usage of Wearable Sensors(WS)and smartphones have increased.The existing framework of conventional telemedicine’s store-and-forward method has some issues,including the need for a nearby health centre with dedicated employees and medical devices to prepare patient reports.Patients’health can be continuously monitored using advanced WS that can be fitted or embedded in their bodies.This research proposes an innovative and smart HMS,which is built using recent technologies such as the IoT and Machine Learning(ML).In this study,we present an innovative and intelligent HMS based on cutting-edge technologies such as the IoT and Deep Learning(DL)+Restricted Boltzmann Machine(RBM).This DL+RBM model is clever enough to detect and process a patient’s data using a medical Decision Support System(DSS)to determine whether the patient is suffering from a major health problem and treat it accordingly.The recommended system’s behavior is increasingly investigated using a cross-validation test that determines various demographically relevant standard measures.Through a healthcare DSS,this framework is clever enough to detect and analyze a patient’s data.Experiment results further reveal that the proposed system is efficient and clever enough to deliver health care.The data reported in this study demonstrate the notion.This device is a low-cost solution for people living in distant places;anyone can use it to determine if they have a major health problem and seek treatment by contacting nearby hospitals.
基金funded by State Grid Shandong Electric Power Company Science and Technology Project Funding under Grant no.520613200001,520613180002,62061318C002Weihai Scientific Research and Innovation Fund(2020).
文摘The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.
文摘There are a variety of Internet of Things(IoT)applications that cover different aspects of daily life.Each of these applications has different criteria and sub-criteria,making it difficult for the user to choose.This requires an automated approach to select IoT applications by considering criteria.This paper presents a novel recommendation system for presenting applications on the IoT.First,using the analytic hierarchy process(AHP),a multi-layer architecture of the criteria and sub-criteria in IoT applications is presented.This architecture is used to evaluate and rank IoT applications.As a result,finding the weight of the criteria and subcriteria requires a metaheuristic approach.In this paper,a sequential quadratic programming algorithm is used to find the optimal weight of the criteria and sub-criteria automatically.To the best of our knowledge,this is the first study to use an analysis of metaheuristic criteria and sub-criteria to design an IoT application recommendation system.The evaluations and comparisons in the experimental results section show that the proposed method is a comprehensive and reliable model for the construction of an IoT applications recommendation system.
基金Supported by the National High Technology Research and Development Program of China(No.2011AA01A102)the Important Science&Technology Project of Hainan Province(No.JDJS2013006,ZDXM2015103)the Young Talent Frontier Project of Institute of Acoustics,Chinese Academy of Sciences
文摘An integrated implementation framework of an intelligent recommendation system for outdoor video advertising is proposed, which is based on the analysis of audiences' characteristics. Firstly, the images of the scene and the people who view the video advertisements are captured by the net- work camera deployed on the video advertising terminal side. Then audiences' characteristics can be obtained by applying computer vision technologies : face detection, face tracking, gender recogni- tion and age estimation. Finally, an intelligent recommendation algorithm is designed to decide the most fitting video ads for each terminal according to multi-dimensional statistical information of its reover, a novel face detection method and a new face tracking method have been proposed to meet the practical requirements of the system, of which the average Fl-score is O. 988 and 0. 951 respec- tively.
文摘A blockchain is a digitized, decentralized, public ledger of all cryptocurrency transactions. The blockchain is transforming industries by enabling innovative business practices. Its revolutionary power has permeated areas such as bank-ing, financing, trading, manufacturing, supply chain management, healthcare, and government. Blockchain and the Internet of Things (BIOT) apply the us-age of blockchain in the inter-IOT communication system, therefore, security and privacy factors are achievable. The integration of blockchain technology and IoT creates modern decentralized systems. The BIOT models can be ap-plied by various industries including e-commerce to promote decentralization, scalability, and security. This research calls for innovative and advanced re-search on Blockchain and recommendation systems. We aim at building a se-cure and trust-based system using the advantages of blockchain-supported secure multiparty computation by adding smart contracts with the main blockchain protocol. Combining the recommendation systems and blockchain technology allows online activities to be more secure and private. A system is constructed for enterprises to collaboratively create a secure database and host a steadily updated model using smart contract systems. Learning case studies include a model to recommend movies to users. The accuracy of models is evaluated by an incentive mechanism that offers a fully trust-based recom-mendation system with acceptable performance.
基金Funding is provided by Taif University Researchers Supporting Project number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘A collaborative filtering-based recommendation system has been an integral part of e-commerce and e-servicing.To keep the recommendation systems reliable,authentic,and superior,the security of these systems is very crucial.Though the existing shilling attack detection methods in collaborative filtering are able to detect the standard attacks,in this paper,we prove that they fail to detect a new or unknown attack.We develop a new attack model,named Obscure attack,with unknown features and observed that it has been successful in biasing the overall top-N list of the target users as intended.The Obscure attack is able to push target items to the top-N list as well as remove the actual rated items from the list.Our proposed attack is more effective at a smaller number of k in top-k similar user as compared to other existing attacks.The effectivity of the proposed attack model is tested on the MovieLens dataset,where various classifiers like SVM,J48,random forest,and naïve Bayes are utilized.
文摘Most real estate agents develop new objects by visiting unfamiliar clients, distributing leaflets, or browsing other real estate trading website platforms,whereas consumers often rely on websites to search and compare prices when purchasing real property. In addition to being time consuming, this search processrenders it difficult for agents and consumers to understand the status changes ofobjects. In this study, Python is used to write web crawler and image recognitionprograms to capture object information from the web pages of real estate agents;perform data screening, arranging, and cleaning;compare the text of real estateobject information;as well as integrate and use the convolutional neural networkof a deep learning algorithm to implement image recognition. In this study, dataare acquired from two business-to-consumer real estate agency networks, i.e., theSinyi real estate agent and the Yungching real estate agent, and one consumer-toconsumer real estate agency platform, i.e., the, FiveNineOne real estate agent. Theresults indicate that text mining can reveal the similarities and differences betweenthe objects, list the number of days that the object has been available for sale onthe website, and provide the price fluctuations and fluctuation times during thesales period. In addition, 213,325 object amplification images are used as a database for training using deep learning algorithms, and the maximum image recognition accuracy achieved is 95%. The dynamic recommendation system for realestate objects constructed by combining text mining and image recognition systems enables developers in the real estate industry to understand the differencesbetween their commodities and other businesses in approximately 2 min, as wellas rapidly determine developable objects via comparison results provided by thesystem. Meanwhile, consumers require less time in searching and comparingprices after they have understood the commodity dynamic information, therebyallowing them to use the most efficient approach to purchase real estate objectsof their interest.
文摘In this paper, we conduct research on the E-commerce consumer behavior based on the intelligent recommendation system andmachine learning. Closely associated with consumer network information search of a problem is that the consumer’s information demand ascan be thought of consumer’s information demand is leading to trigger the power of consumer network information search behavior, whenconsumer is willing to buy goods, in a certain task under the infl uence of factors, environmental factors, individual factors, consumers and thetask object interaction to form the demand of consumer cognition. Under this basis, this paper proposes the new idea on the related issues thatwill solve the related challenges.
文摘According to demand and function of the e-commerce recommendation system demand, this paper analyze and design e-commerce and personalized recommendation, design and complete different system functions in different system level; then design in detail system process from the front and back office systems, and in detail descript the key data in the database and several tables. Finally, the paper respectively tests several main modules of onstage system and the backstage system. The paper designed electronic commerce recommendation based on personalized recommendation system, it can complete the basic function of the electronic commerce system, also can be personalized commodity recommendation for different users, the user data information and the user' s shopping records.
基金supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)+2 种基金Hunan Provincial Social Science Achievement Review Committee results appraisal identification project(Xiang social assessment 2016JD05)Key Project of Hunan Provincial Social Science Achievement Review Committee(XSP 19ZD1005)the financial support provided by the Key Laboratory of Hunan Province for New Retail Virtual Reality Technology(2017TP1026).
文摘Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces project attribute fuzzy matrix,measures the project relevance through fuzzy clustering method,and classifies all project attributes.Then,the weight of the project relevance is introduced in the user similarity calculation,so that the nearest neighbor search is more accurate.In the prediction scoring section,considering the change of user interest with time,it is proposed to use the time weighting function to improve the influence of the time effect of the evaluation,so that the newer evaluation information in the system has a relatively large weight.The experimental results show that the improved algorithm improves the recommendation accuracy and improves the recommendation quality.