期刊文献+
共找到809篇文章
< 1 2 41 >
每页显示 20 50 100
Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder
1
作者 S.Abinaya K.Uttej Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第2期2269-2286,共18页
A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer prefe... A Recommender System(RS)is a crucial part of several firms,particularly those involved in e-commerce.In conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences.Nowadays,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’preferences.On the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested items.However,the cost of these computations increases nonlinearly as the number of items and users increases.To triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two phases.In the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM approach.In the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple clusters.Hence the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation time.An experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures. 展开更多
关键词 Recommender systems multicriteria rating collaborative filtering sparsity issue scalability issue stacked-autoencoder Kernel Fuzzy C-Means Clustering
下载PDF
First Batch of Anhui Brandname Products Recommended by Anhui Provincial People's Government
2
《China's Foreign Trade》 1996年第8期14-15,共2页
Product NameMagang brand high quality carbon steel,common low carbon steel-made cold/hotrolling coil rod(without twisting control)Magang brand integral roll steel-madepassenger train wheel(φ915mm) forrailway useJingj... Product NameMagang brand high quality carbon steel,common low carbon steel-made cold/hotrolling coil rod(without twisting control)Magang brand integral roll steel-madepassenger train wheel(φ915mm) forrailway useJingjing brand electrolytic 展开更多
关键词 Co West First Batch of Anhui Brandname Products recommended by Anhui Provincial People’s Government
下载PDF
A multilayer network diffusion-based model for reviewer recommendation
3
作者 黄羿炜 徐舒琪 +1 位作者 蔡世民 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期700-717,共18页
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d... With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes. 展开更多
关键词 reviewer recommendation multilayer network network diffusion model recommender systems complex networks
下载PDF
A review of public health guidelines for postpartum physical activity and sedentary behavior from around the world
4
作者 Kelly R.Evenson Wendy J.Brown +2 位作者 Alison K.Brinson Emily Budzynski-Seymour Melanie Hayman 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第4期472-483,F0003,共13页
Background:The period following pregnancy is a critical time window when future habits with respect to physical activity(PA) and sedentary behavior(SB) are established;therefore,it warrants guidance.The purpose of thi... Background:The period following pregnancy is a critical time window when future habits with respect to physical activity(PA) and sedentary behavior(SB) are established;therefore,it warrants guidance.The purpose of this scoping review was to summarize public health-oriented country-specific postpartum PA and SB guidelines worldwide.Methods:To identity guidelines published since 2010,we performed a(a) systematic search of 4 databases(CINAHL,Global Health,PubMed,and SPORTDiscus),(b) structured repeatable web-based search separately for 194 countries,and(c) separate web-based search.Only the most recent guideline was included for each country.Results:We identified 22 countries with public health-oriented postpartum guidelines for PA and 11 countries with SB guidelines.The continents with guidelines included Europe(n=12),Asia(n=5),Oceania(n=2),Africa(n=1),North America(n=1),and South America(n=1).The most common benefits recorded for PA included weight control/management(n=10),reducing the risk of postpartum depression or depressive symptoms(n=9),and improving mood/well-being(n=8).Postpartum guidelines specified exercises to engage in,including pelvic floor exercises(n=17);muscle strengthening,weight training,or resistance exercises(n=13);aerobics/general aerobic activity(n=13);walking(n=11);cycling(n=9);and swimming(n=9).Eleven guidelines remarked on the interaction between PA and breastfeeding;several guidelines stated that PA did not impact breast milk quantity(n=7),breast milk quality(n=6),or infant growth(n=3).For SB,suggestions included limiting long-term sitting and interrupting sitting with PA.Conclusion:Country-specific postpartum guidelines for PA and SB can help promote healthy behaviors using a culturally appropriate context while providing specific guidance to public health practitioners. 展开更多
关键词 BREASTFEEDING Caesarean section GUIDELINES POSTNATAL RECOMMENDATIONS
下载PDF
An Adaptive Program Recommendation System for Multi-User Sharing Environment
5
作者 Sun Shiyun Hu Zhengying +1 位作者 Wei Xin Zhou Liang 《China Communications》 SCIE CSCD 2024年第6期112-128,共17页
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ... More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme. 展开更多
关键词 ADAPTIVE EXPLOITATION LinUCB MULTIUSER recommendation system
下载PDF
Urban Traffic Control Meets Decision Recommendation System:A Survey and Perspective
6
作者 Qingyuan Ji Xiaoyue Wen +2 位作者 Junchen Jin Yongdong Zhu Yisheng Lv 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2043-2058,共16页
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ... Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field. 展开更多
关键词 Recommendation system traffic control traffic perception traffic prediction
下载PDF
Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners:A Recommendation System
7
作者 Ameni Ellouze Nesrine Kadri +1 位作者 Alaa Alaerjan Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第4期351-372,共22页
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t... Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women. 展开更多
关键词 Human physical activities smartphone sensors deep learning distributed monitoring recommendation system uncertainty HEALTHY CALORIES
下载PDF
Improving Diversity with Multi-Loss Adversarial Training in Personalized News Recommendation
8
作者 Ruijin Xue Shuang Feng Qi Wang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3107-3122,共16页
Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recomm... Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations. 展开更多
关键词 News recommendation DIVERSITY ACCURACY data augmentation
下载PDF
Joint Modeling of Citation Networks and User Preferences for Academic Tagging Recommender System
9
作者 Weiming Huang Baisong Liu Zhaoliang Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4449-4469,共21页
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq... In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques. 展开更多
关键词 Collaborative filtering citation networks variational inference poisson factorization tag recommendation
下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
10
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
下载PDF
Diversified and compatible web APIs recommendation based on game theory in IoT
11
作者 Wenwen Gong Huiping Wu +4 位作者 Xiaokang Wang Xuyun Zhang Yawei Wang Yifei Chen Mohammad R.Khosravi 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1198-1209,共12页
With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can b... With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can be accessible remotely.In this context,finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications.However,the number and diversity of candidate IoT Web APIs places an additional burden on application developers’Web API selection decisions,as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected.Considering this challenge and latest successful applications of game theory in IoT,a Diversified and Compatible Web APIs Recommendation approach,namely DivCAR,is put forward in this paper.First of all,to achieve API diversity,DivCAR employs random walk sampling technique on a pre-built“API-API”correlation graph to generate diverse“API-API”correlation subgraphs.Afterwards,with the diverse“API-API”correlation subgraphs,the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem.A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem.At last,a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com.Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility. 展开更多
关键词 Internet of things Web APIs recommendation Game theory Diversity and compatibility
下载PDF
Enhancing ChatGPT’s Querying Capability with Voice-Based Interaction and CNN-Based Impair Vision Detection Model
12
作者 Awais Ahmad Sohail Jabbar +3 位作者 Sheeraz Akram Anand Paul Umar Raza Nuha Mohammed Alshuqayran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3129-3150,共22页
This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-... This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences. 展开更多
关键词 Accessibility in conversational AI CNN-based impair vision detection ChatGPT voice-based interaction recommender system
下载PDF
Recommendation Method for Contrastive Enhancement of Neighborhood Information
13
作者 Hairong Wang Beijing Zhou +1 位作者 Lisi Zhang He Ma 《Computers, Materials & Continua》 SCIE EI 2024年第1期453-472,共20页
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as ... Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1. 展开更多
关键词 Contrastive learning knowledge graph recommendation method
下载PDF
Enhancing personalized exercise recommendation with student and exercise portraits
14
作者 Wei-Wei Gao Hui-Fang Ma +2 位作者 Yan Zhao Jing Wang Quan-Hong Tian 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期91-109,共19页
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen... The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity. 展开更多
关键词 Educational data mining Exercise recommend Joint random walk Nearly uncoupled Markov chains Optimization Personalized learning
下载PDF
The use of oral human immunodeficiency virus pre-exposure prophylaxis in pregnant and lactating women in sub-Saharan Africa:considerations,barriers,and recommendations
15
作者 Enos Moyo Grant Murewanhema +2 位作者 Perseverance Moyo Tafadzwa Dzinamarira Andrew Ross 《Global Health Journal》 2024年第2期41-45,共5页
In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating wom... In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating women(PLW)in SSA.It is estimated that the risk of HIV-acquisition during pregnancy and the postpartum period more than doubles.In this article,we discuss the safety and effectiveness of drugs used for oral HIV pre-exposure prophylaxis(PrEP),considerations for initiating PrEP in PLW,the barriers to initiating and adhering to PrEP among them and suggest recommendations to address these barriers.Tenofovir/emtricitabine,the most widely used combination in SSA,is safe,clinically effective,and cost-effective among PLW.Any PLW who requests PrEP and has no medical contraindications should receive it.PrEP users who are pregnant or lactating may experience barriers to starting and adhering for a variety of reasons,including personal,pill-related,and healthcare facility-related issues.To address the barriers,we recommend an increased provision of information on PrEP to the women and the communities,increasing and/or facilitating access to PrEP among the PLW,and developing strategies to increase adherence. 展开更多
关键词 Pre-exposure prophylaxis PREGNANCY LACTATION SAFETY Barriers RECOMMENDATIONS
下载PDF
LKPNR: Large Language Models and Knowledge Graph for Personalized News Recommendation Framework
16
作者 Hao Chen Runfeng Xie +4 位作者 Xiangyang Cui Zhou Yan Xin Wang Zhanwei Xuan Kai Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4283-4296,共14页
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text... Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR. 展开更多
关键词 Large language models news recommendation knowledge graphs(KG)
下载PDF
Levels of evidence and grades of recommendation supporting European society for medical oncology clinical practice guidelines
17
作者 MARKO SKELIN BRUNA PERKOV-STIPIČIN +5 位作者 SANJA VUŠKOVIĆ MARINAŠANDRK PLEHAČEK ANE BAŠIĆ DAVIDŠARČEVIĆ MAJA ILIĆ IVAN KREČAK 《Oncology Research》 SCIE 2024年第5期807-815,共9页
Background:The European Society for Medical Oncology(ESMO)guidelines are among the most comprehensive and widely used clinical practice guidelines(CPGs)globally.However,the level of scientific evidence supporting ESMO... Background:The European Society for Medical Oncology(ESMO)guidelines are among the most comprehensive and widely used clinical practice guidelines(CPGs)globally.However,the level of scientific evidence supporting ESMO CPG recommendations has not been systematically investigated.This study assessed ESMO CPG levels of evidence(LOE)and grades of recommendations(GOR),as well as their trends over time across various cancer settings.Methods:We manually extracted every recommendation with the Infectious Diseases Society of America(IDSA)classification from each CPG.We examined the distribution of LOE and GOR in all available ESMO CPG guidelines across different topics and cancer types.Results:Among the 1,823 recommendations in the current CPG,30%were classified as LOEⅠ,and 43%were classified as GOR A.Overall,there was a slight decrease in LOEⅠ(−2%)and an increase in the proportion of GOR A(+1%)in the current CPG compared to previous versions.The proportion of GOR A recommendations based on higher levels of evidence such as randomized trials(LOEⅠ–Ⅱ)shows a decrease(71%vs.63%,p=0.009)while recommendations based on lower levels of evidence(LOEⅢ–Ⅴ)show an increase(29%vs.37%,p=0.01)between previous and current version.In the current versions,the highest proportion of LOEⅠ(42%)was found in recommendations related to pharmacotherapy,while the highest proportion of GOR A recommendations was found in the areas of pathology(50%)and diagnostic(50%)recommendations.Significant variability in LOEⅠand GOR A recommendations and their changes over time was observed across different cancer types.Conclusion:One-third of the current ESMO CPG recommendations are supported by the highest level of evidence.More well-designed randomized clinical trials are needed to increase the proportion of LOEⅠand GOR A recommendations,ultimately leading to improved outcomes for cancer patients. 展开更多
关键词 ESMO guidelines Clinical practice guidelines Level of evidence Grade of recommendation
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
18
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Adherence to Advisory Committee on Immunization Practices in diabetes mellitus patients in Saudi Arabia:A multicenter retrospective study
19
作者 Saleh Fahad Alqifari Aya K Esmail +12 位作者 Dalal M Alarifi Ghalya Y Alsuliman Maram M Alhati May R Mutlaq Mohammed Aldhaeefi Shaden A Alshuaibi Palanisamy Amirthalingam Abrar Abdallah Afaf S Wasel Heba R Hamad Shoroq Alamin Tasneem H Atia Tariq Alqahtani 《World Journal of Diabetes》 SCIE 2024年第3期440-454,共15页
BACKGROUND Patients with diabetes mellitus(DM)are predisposed to an increased risk of infection signifying the importance of vaccination to protect against its potentially severe complications.The Centers for Disease ... BACKGROUND Patients with diabetes mellitus(DM)are predisposed to an increased risk of infection signifying the importance of vaccination to protect against its potentially severe complications.The Centers for Disease Control and Prevention/Advisory Committee on Immunization Practices(CDC/ACIP)issued immunization recommendations to protect this patient population.AIM To assess the adherence of patients with DM to the CDC/ACIP immunization recommendations in Saudi Arabia and to identify the factors associated with the vaccine adherence rate.METHODS An observational retrospective study conducted in 2023 was used to collect data on the vaccination records from 13 diabetes care centers in Saudi Arabia with 1000 eligible patients in phase I with data collected through chart review and 709 patients in phase II through online survey.RESULTS Among participants,10.01%(n=71)had never received any vaccine,while 85.89%(n=609)received at least one dose of the coronavirus disease 2019(COVID-19)vaccine,and 34.83%(n=247)had received the annual influenza vaccine.Only 2.96%(n=21),2.11%(n=15),and 1.12%(n=8)received herpes zoster,tetanus,diphtheria,and pertussis(Tdap),and human papillomavirus(HPV)vaccines,respectively.For patients with DM in Saudi Arabia,the rate of vaccination for annual influenza and COVID-19 vaccines was higher compared to other vaccinations such as herpes zoster,Tdap,pneumococcal,and HPV.Factors such as vaccine recommendations provided by family physicians or specialists,site of care,income level,DM-related hospitalization history,residency site,hemoglobin A1c(HbA1c)level,and health sector type can significantly influence the vaccination rate in patients with DM.Among non-vaccinated patients with DM,the most reported barriers were lack of knowledge and fear of side effects.This signifies the need for large-scale research in this area to identify additional factors that might facilitate adherence to CDC/ACIP vaccine recommendations in patients with DM.CONCLUSION In Saudi Arabia,patients with DM showed higher vaccination rates for annual influenza and COVID-19 vaccines compared to other vaccinations such as herpes zoster,Tdap,pneumococcal,and HPV.Factors such as vaccine recommendations provided by family physicians or specialists,the site of care,income level,DM-related hospitalization history,residency site,HbA1c level,and health sector type can significantly influence the vaccination rate in patients with DM. 展开更多
关键词 Diabetes mellitus Vaccine recommendation COVID-19 vaccine Influenza vaccine Pneumococcal vaccine IMMUNIZATION Retrospective study
下载PDF
Research and design of matrix operation accelerator based on reconfigurable array
20
作者 邓军勇 ZHANG Pan +2 位作者 JIANG Lin XIE Xiaoyan DENG Jingwen 《High Technology Letters》 EI CAS 2024年第2期128-137,共10页
In the case of massive data,matrix operations are very computationally intensive,and the memory limitation in standalone mode leads to the system inefficiencies.At the same time,it is difficult for matrix operations t... In the case of massive data,matrix operations are very computationally intensive,and the memory limitation in standalone mode leads to the system inefficiencies.At the same time,it is difficult for matrix operations to achieve flexible switching between different requirements when implemented in hardware.To address this problem,this paper proposes a matrix operation accelerator based on reconfigurable arrays in the context of the application of recommender systems(RS).Based on the reconfigurable array processor(APR-16)with reconfiguration,a parallelized design of matrix operations on processing element(PE)array is realized with flexibility.The experimental results show that,compared with the proposed central processing unit(CPU)and graphics processing unit(GPU)hybrid implementation matrix multiplication framework,the energy efficiency ratio of the accelerator proposed in this paper is improved by about 35×.Compared with blocked alternating least squares(BALS),its the energy efficiency ratio has been accelerated by about 1×,and the switching of matrix factorization(MF)schemes suitable for different sparsity can be realized. 展开更多
关键词 matrix factorization(MF) recommender system(RS) array processor RECONFIGURABLE matrix multiplication
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部