A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing....Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金supported under Australian Research Council’s Discovery Early Career Researcher Award(DECRA)funding scheme(project number DE150100924)The University of Melbourne’s Early Career Researcher(ECR)funding scheme(project number 602702)the Victoria Fellowship(D2015/35025)
文摘Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.