In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord...In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.展开更多
In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its s...In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its scheduling problem. The basic DTPN modules are presented to model the corresponding variable structures in RPL, and then the scheduling model of the whole RPL is constructed. And in the scheduling algorithm, firing sequences of the Petri nets model are used as chromosomes, thus the selection, crossover, and mutation operator do not deal with the elements in the problem space, but the elements of Petri nets model. Accordingly, all the algorithms for GA operations embedded with Petri nets model are proposed. Moreover, the new weighted single-objective optimization based on reconfiguration cost and E/T is used. The results of a DC motor RPL scheduling suggest that the presented DTPN-GA scheduling algorithm has a significant impact on RPL scheduling, and provide obvious improvements over the conventional scheduling method in practice that meets duedate, minimizes reconfiguration cost, and enhances cost effectivity.展开更多
基金supported by the National Natural Science Foundation of China(71871203,52005447,L1924063)Zhejiang Provincial Natural Science Foundation of China(LY18G010017,LQ21E050014).
文摘In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.
基金This project is supported by Key Science-Technology Project of Shanghai City Tenth Five-Year-Plan, China (No.031111002)Specialized Research Fund for the Doctoral Program of Higher Education, China (No.20040247033)Municipal Key Basic Research Program of Shanghai, China (No.05JC14060)
文摘In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its scheduling problem. The basic DTPN modules are presented to model the corresponding variable structures in RPL, and then the scheduling model of the whole RPL is constructed. And in the scheduling algorithm, firing sequences of the Petri nets model are used as chromosomes, thus the selection, crossover, and mutation operator do not deal with the elements in the problem space, but the elements of Petri nets model. Accordingly, all the algorithms for GA operations embedded with Petri nets model are proposed. Moreover, the new weighted single-objective optimization based on reconfiguration cost and E/T is used. The results of a DC motor RPL scheduling suggest that the presented DTPN-GA scheduling algorithm has a significant impact on RPL scheduling, and provide obvious improvements over the conventional scheduling method in practice that meets duedate, minimizes reconfiguration cost, and enhances cost effectivity.